Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T14:13:26.917Z Has data issue: false hasContentIssue false

Collisional transfer of energy and momentum between drifting tri-Maxwellians

Published online by Cambridge University Press:  13 March 2009

R. Hernández
Affiliation:
Max-Planck-Institut für Aeronomie, D-3411 Katlenburg-Lindau, F. R., Germany
E. Marsch
Affiliation:
Max-Planck-Institut für Aeronomie, D-3411 Katlenburg-Lindau, F. R., Germany

Abstract

The collisional transfer tensor for energy and transfer vector for momentum exchange between drifting tri-Maxwellians for an arbitrary central interaction force between neutral and/or ionized particles are evaluated. We introduce the new concept of a generalized Rosenbluth potential whereby the heat and momentum exchange rates can be written in a concise form. We also discuss the associated time-scales which depend on the masses, densities, temperatures, and drift velocities of the two colliding species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barakat, A. R. & Schunk, R. W. 1981 J. Phys. D, 14, 421.CrossRefGoogle Scholar
Barakat, A. R. & Schunk, R. W. 1982 Plasma Phys. 24, 389.CrossRefGoogle Scholar
Boyd, T. J. M. & Sanderson, I. I. 1969 Plasma Dynamics. Nelson.Google Scholar
Braginskii, S. I. 1965 Review of Plasma Physics (ed. Leontovich, M. A.), vol. 1, p. 205. Consultants Bureau.Google Scholar
Burgers, J. M. 1969 Flow Equations for Composite Gases. Academic.Google Scholar
Chapman, S. & Cowling, T. G. 1960 The Mathematical Theory of Non-Uniform Gases. Cambridge University Press.Google Scholar
Demars, H. G. & Schunk, R. W. 1979 J. Phys. D, 12, 1051.CrossRefGoogle Scholar
Hernández, R. & Marsch, E. 1985 J. Geophys. Res. 90, 11062.CrossRefGoogle Scholar
Hinton, F. L. 1983 Basic Plasma Physics I (ed. Galeev, A. A. and Sudan, R. N.), p. 147. North-Holland.Google Scholar
Hubert, D. 1984 Planet. Space Sci. 32, 1061.CrossRefGoogle Scholar
Marsch, E. & Livi, S. 1985 a Annales Geophysicae, 3, 545.Google Scholar
Marsch, E. & Livi, S. 1985 b Phys. Fluids, 28, 1379.CrossRefGoogle Scholar
Rosenbluth, M. N., McDonald, W. & Judd, D. 1957 Phys. Rev. 107, 1.CrossRefGoogle Scholar
Rossi, B. & Olbert, S. 1970 Introduction to the Physics of Space. McGraw-Hill.Google Scholar
Salat, A. 1974 Plasma Phys. 17, 589.CrossRefGoogle Scholar
Schunk, R. W. 1975 Planet. Space Sci. 23, 437.CrossRefGoogle Scholar
Spitzer, L. 1962 Physics of Fully Ionized Gases. Interscience.Google Scholar
Tanenbaum, B. S. 1967 Plasma Physics. McGraw-Hill.Google Scholar