Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T14:53:55.102Z Has data issue: false hasContentIssue false

Collimation of laser-driven energetic protons in a capillary

Published online by Cambridge University Press:  06 January 2012

D.-P. CHEN
Affiliation:
Department of Physics, National University of Defense Technology, Changsha 410073, China ([email protected])
Y. YIN
Affiliation:
Department of Physics, National University of Defense Technology, Changsha 410073, China ([email protected])
Z.-Y. GE
Affiliation:
Department of Physics, National University of Defense Technology, Changsha 410073, China ([email protected])
H. XU
Affiliation:
National Laboratory of Parallel and Distributed Processing, National University of Defense Technology, Changsha 410073, China
H.-B. ZHUO
Affiliation:
Department of Physics, National University of Defense Technology, Changsha 410073, China ([email protected])
Y.-Y. MA
Affiliation:
Department of Physics, National University of Defense Technology, Changsha 410073, China ([email protected])
F.-Q. SHAO
Affiliation:
Department of Physics, National University of Defense Technology, Changsha 410073, China ([email protected])
C.-L. TIAN
Affiliation:
Department of Physics, National University of Defense Technology, Changsha 410073, China ([email protected])

Abstract

Energetic divergent proton beams can be generated in the interaction of ultra-intense laser pulses with solid-density foil targets via target normal sheath acceleration (TNSA). In this paper, a scheme using a capillary to reduce the proton beam divergence is proposed. By two-dimensional particle-in-cell (PIC) simulations, it is shown that strong transverse electric and magnetic fields rapidly grow at the inner surface of the capillary when the laser-driven hot electrons propagate through the target and into the capillary. The spontaneous magnetic field collimates the electron flow, and the ions dragged from the capillary wall by hot electrons neutralize the negative charge and thus restrain the transverse extension of the sheath field set up by electrons. The proton beam divergence, which is mainly determined by the accelerating sheath field, is therefore reduced by the transverse limitation of the sheath field in the capillary.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Roth, M., Cowan, T. E., Key, M. H., et al. 2001 Phys. Rev. Lett. 86, 436.CrossRefGoogle Scholar
[2]Borghesi, M., Fuchs, J., Bulanov, S. V., Mackinnon, A. J., Patel, P. K. and Roth, M. 2006 Fusion Sci. Technol. 49, 412.CrossRefGoogle Scholar
[3]Bulanov, S. and Khoroshkov, V. 2002 Plasma Phys. Rep. 28, 453.CrossRefGoogle Scholar
[4]Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., MacKinnon, A., Snavely, R. A., et al. 2001 Phys. Plasmas 8, 542.CrossRefGoogle Scholar
[5]Zhang, X. M., Shen, B. F., Li, X. M., Jin, Z. Y., Wang, F. C. and Wen, M. 2007 Phys. Plasmas 14, 123108.CrossRefGoogle Scholar
[6]Chen, M., Sheng, Z. M., Dong, Q. L., He, M. Q., Li, Y. T., Bari, M. A. and Zhang, J. 2007 Phys. Plasmas 14, 053102.CrossRefGoogle Scholar
[7]Yan, X. Q., Lin, C., Sheng, Z. M., Guo, Z. Y., Liu, B. C., Lu, Y. R., Fang, J. X. and Chen, J. E. 2008 Phys. Rev. Lett. 100, 135003.CrossRefGoogle Scholar
[8]Macchi, A., Veghini, S. and Pegoraro, F. 2009 Phys. Rev. Lett. 103, 085003.CrossRefGoogle Scholar
[9]Zhuo, H. B., Chen, Z. L., Yu, W., Sheng, Z. M., Yu, M. Y., Jin, Z. and Kodama, R. 2010 Phys. Rev. Lett. 105, 065003.CrossRefGoogle Scholar
[10]Passoni, M., Bertagna, L. and Zani, A. 2010 New J. Phys. 12, 045012.CrossRefGoogle Scholar
[11]Sonobe, R., Kawata, S., Miyazaki, S., Nakamura, M. and Kikuchi, T. 2005 Phys. Plasmas 12, 073104.CrossRefGoogle Scholar
[12]Okada, T., Andreev, A. A., Mikado, Y. and Okubo, K. 2006 Phys. Rev. E. 74, 026401.CrossRefGoogle Scholar
[13]Patel, P. K., Mackinnon, A. J., Key, M. H., Cowan, T. E., Foord, M. E., Allen, M., Price, D. F., Ruhl, H., Springer, P. T. and Stephens, R. 2003 Phys. Rev. Lett. 91, 125004.CrossRefGoogle Scholar
[14]Buffechoux, S., Psikal, J., Nakatsutsumi, M., Romagnani, L., Andreev, A., Zeil, K., Amin, M., Antici, P., Burris-Mog, T., Compant-La-Fontaine, A., et al. 2010 Phys. Rev. Lett. 105, 015005.CrossRefGoogle Scholar
[15]Toncian, T., Borghesi, M., Fuchs, J., d'Humières, E., Antici, P., Audebert, P., Brambrink, E., Cecchetti, C., Pipahl, A., Romagnani, L., et al. , 2006 Science 312, 410.CrossRefGoogle Scholar
[16]Stolterfoht, N., Bremer, J.-H., Hoffmann, V., Hellhammer, R., Fink, D., Petrov, A. and Sulik, B. 2002 Phys. Rev. Lett. 88, 133201.CrossRefGoogle Scholar
[17]Wu, S. Z., Zhou, C. T. and Zhu, S. P. 2010. Phys. Plasmas 17, 063103.CrossRefGoogle Scholar
[18]Cai, H. B., Zhu, S. P., He, X. T., Wu, S. Z. and Chen, M. 2011 Phys. Plasmas 18, 023106.CrossRefGoogle Scholar