Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T16:04:32.576Z Has data issue: false hasContentIssue false

Classical free-electron lasing in an undulating electrostatic field in the axial direction

Published online by Cambridge University Press:  13 March 2009

S. H. Kim
Affiliation:
Department of Physics, University of Texas at Arlington, P. O. Box 19059, Arlington, Texas 76019–0059, U.S.A.

Abstract

It is shown that the phase of the electromagnetic wave emitted through stimulated emission is intrinsically random. The insensitivity of the phase of the laser field to any disturbance in the laser cavity parameter derives from the fact that stimulated and spontaneous emissions take place concurrently at the same wave vector, the phases of spontaneous emission are mildly bunched, and the central limit theorem can be applied to the phase of the laser field. The two spectral lines observed in the Smith-Purcell free-electron laser experiment show that both classical and quantum-mechanical free-electron lasings, in which the wigglers behave as classical waves and wiggler quanta respectively, take place concurrently at different laser wavelengths in the case of the electric wiggler. It is shown that the coherence of the classical free-electron laser is achieved through modulation of the relativistic electron mass by the electric wiggler. The classical free-electron lasing is calculated using the quantum-augmented classical theory. In this, the probability of stimulated emission is first evaluated by interpreting the classically derived energy exchange between an electron and the laser field from a quantum-mechanical viewpoint. Then the laser gain is obtained from this probability by using a relationship between the two quantities derived by quantum kinetics. The wavelength of the fundamental line of classical free-electron lasing is twice the wavelength of the fundamental line of the free-electron two-quantum Stark emission, which is the quantum free-electron lasing in the electric wiggler. The gain of the classical free-electron lasing appears to scale as λ3w3, where γ is the Lorentz factor of the electron beam and λw is the wavelength of the wiggler.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Autler, S. H. & Townes, C. H. 1955 Phys. Rev. 100, 703.CrossRefGoogle Scholar
Baranger, M. & Mozer, B. 1961 Phys. Rev. 123, 25.CrossRefGoogle Scholar
Bekefi, G. 1980 J. Appl. Phys. 51, 3081.CrossRefGoogle Scholar
Bonifacio, R. & Lugiato, L. A. 1975 Phys. Rev. A 11, 1507.CrossRefGoogle Scholar
Brau, C. 1990 Free-Electron Lasers. Academic.Google Scholar
Burrel, C. F. & Kunze, H.-J. 1972 Phys. Rev. Lett. 29, 1445.CrossRefGoogle Scholar
Chen, F. F. 1974 Introduction to Plasma Physics, p. 219. Plenum.Google Scholar
Dicke, R. H. 1954 Phys. Rev. 93, 99.CrossRefGoogle Scholar
DuBois, D. F. & Goldman, M. V. 1966 Phys. Rev. 14, 544.Google Scholar
Elias, L. R., Fairbank, M., Madey, J. M. J., Schwettmann, H. A. & Smith, T. I. 1976 Phys. Rev. Lett. 36, 717.CrossRefGoogle Scholar
Feller, W. 1971 An Introduction to Probability Theory and its Applications. Wiley.Google Scholar
Fujiyama, H. & Nambu, M. 1984 Phys. Lett. 105 A, 295.CrossRefGoogle Scholar
Gover, A. 1980 Appl. Phys. 23, 295.CrossRefGoogle Scholar
Grauber, R. J. & Haake, F. 1976 Phys. Rev. A 13, 357.CrossRefGoogle Scholar
Gross, M., Fabre, C., Pillet, P. & Haroche, S. 1976 Phys. Rev. Lett. 36, 1035.CrossRefGoogle Scholar
Kim, S. H. 1977 J. Appl. Phys. 48, 3651.CrossRefGoogle Scholar
Kim, S. H. 1978 a J. Korean Phys. Soc. 11, 34.Google Scholar
Kim, S. H. 1978 b J. Appl. Phys. 49, 3066.CrossRefGoogle Scholar
Kim, S. H. 1984 Phys. Fluids 27, 675.CrossRefGoogle Scholar
Kim, S. H. 1986 J. Plasma Phys. 36, 195 [Corrigendum 41, 577 (1989)].CrossRefGoogle Scholar
Kim, S. H. 1989 a Phys. Lett. 135 A, 39.CrossRefGoogle Scholar
Kim, S. H. 1989 b Phys. Lett. 135 A, 44.CrossRefGoogle Scholar
Kim, S. H. 1990 Free-Electron Lasers and Applications (ed. Prosnitz, D.), SPIE Proc. 1227, p. 66. SPIE-The International Society for Optical Engineering.CrossRefGoogle Scholar
Kim, S. H. 1991 a Nuovo Cim. B 106, 325.CrossRefGoogle Scholar
Kim, S. H. 1991 b Intense Microwave and Particle Beams II (ed. Brandt, H. E.), SPIE vol. 1407, p. 620. SPIE-The International Society for Optical Engineering.CrossRefGoogle Scholar
Kim, S. H. 1991 c NUOVO Cim. B (in press).Google Scholar
Kim, S. H. 1992 J. Phys. Soc. Japan 61, 131.Google Scholar
Kim, S. H., Chen, K. W. & Yang, J. S. 1990 J. Appl. Phys. 68, 4942.CrossRefGoogle Scholar
Kim, S. H. & Chung, H. Y. 1978 J. Appl. Phys. 49, 49.Google Scholar
Kim, S. H. & Wilhelm, H. E. 1973 J. Appl. Phys. 44, 802.CrossRefGoogle Scholar
Madey, J. M. J. 1971 J. Appl. Phys. 42, 1906.CrossRefGoogle Scholar
Nambu, M. 1976 Phys. Fluids 19, 412.CrossRefGoogle Scholar
Nambu, M. 1983 Laser and Particle Beams 1, 427.CrossRefGoogle Scholar
Nambu, M., Sarma, S. N. & Bujarbarua, S. S. 1990 Phys. Fluids B 2, 302.CrossRefGoogle Scholar
Nishikawa, K. 1968 J. Phys. Soc. Japan 24, 916.CrossRefGoogle Scholar
Orzechowski, T. J., Anderson, B. R., Clark, J. C., Fawley, W. M., Paul, A. C., Prosnitz, D., Scharlemann, E. T., Yarema, S. M., Hopkins, D. B., Sessler, A. M. & Wurtele, J. S. 1986 Phys. Rev. Lett. 57, 2172.CrossRefGoogle Scholar
Sarma, S. N., Sarma, K. K. & Nambu, M. 1991 J. Plasma Phys. 46, 331.CrossRefGoogle Scholar
Smith, S. J. & Purcell, E. M. 1953 Phys. Rev. 92, 1069.CrossRefGoogle Scholar
Silin, V. P. 1965 Soviet Phys. JETP 21, 1127.Google Scholar
Verdeyen, J. T. 1981 Laser Electronics, p. 12. Prentice-Hall.Google Scholar