Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T03:55:38.006Z Has data issue: false hasContentIssue false

Characterization of laser-driven proton beams from near-critical density targets using copper activation

Published online by Cambridge University Press:  05 September 2014

L. Willingale*
Affiliation:
Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA
S. R. Nagel
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
A. G. R. Thomas
Affiliation:
Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA
C. Bellei
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
R. J. Clarke
Affiliation:
Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX, UK
A. E. Dangor
Affiliation:
Blackett Laboratory, The John Adams Institute for Accelerator Science, Imperial College London SW7 2AZ, UK
R. Heathcote
Affiliation:
Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX, UK
M. C. Kaluza
Affiliation:
Institut für Optik und Quantenelektronik, Max-Wien-Platz 1, 07743 Jena, Germany Helmholtz Institute Jena, Frbelstieg 3, 07743 Jena, Germany
C. Kamperidis
Affiliation:
Blackett Laboratory, The John Adams Institute for Accelerator Science, Imperial College London SW7 2AZ, UK
S. Kneip
Affiliation:
Blackett Laboratory, The John Adams Institute for Accelerator Science, Imperial College London SW7 2AZ, UK
K. Krushelnick
Affiliation:
Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA
N. Lopes
Affiliation:
Blackett Laboratory, The John Adams Institute for Accelerator Science, Imperial College London SW7 2AZ, UK GoLP, Instituto Superior Tecnico, Lisbon, Portugal
S. P. D. Mangles
Affiliation:
Blackett Laboratory, The John Adams Institute for Accelerator Science, Imperial College London SW7 2AZ, UK
W. Nazarov
Affiliation:
High Energy Laser Materials R&D Laboratory, University of St Andrews, Unit 4, St Andrews NTC, North Haugh, St Andrews, Fife KY16 9ST, UK
P. M. Nilson
Affiliation:
Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA
Z. Najmudin
Affiliation:
Blackett Laboratory, The John Adams Institute for Accelerator Science, Imperial College London SW7 2AZ, UK
*
Email address for correspondence: [email protected]

Abstract

Copper activation was used to characterize high-energy proton beam acceleration from near-critical density plasma targets. An enhancement was observed when decreasing the target density, which is indicative for an increased laser-accelerated hot electron density at the rear target-vacuum boundary. This is due to channel formation and collimation of the hot electrons inside the target. Particle-in-cell simulations support the experimental observations and show the correlation between channel depth and longitudinal electric field strength is directly correlated with the proton acceleration.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Previous address: Blackett Laboratory, Imperial College London SW7 2AZ, United Kingdom

References

REFERENCES

Albright, B. J., Yin, L., Bowers, K. J., Hegelich, B. M., Flippo, K. A., Kwan, T. J. T. and Fernández, J. C. 2007 Relativistic Buneman instability in the laser breakout afterburner. Phys. Plas. 14, 094502.CrossRefGoogle Scholar
Clark, E. L. 2001 Measurements of energetic particles from ultra intense laser plasma interactions. PhD thesis, University of London.Google Scholar
Clark, E. L. et al. 2000 Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 1654.Google Scholar
Clarke, R. J. et al. 2008 Nuclear activation as a high dynamic range diagnostic of laser-plasma interactions. Nucl. Instrum. Methods Phys. Res. 585, 117120.Google Scholar
Falconer, J. W., Nazarov, W. and Horsfield, C. J. 1995 In-situ production of very-low-density microporous polymeric foams. J. Vac. Sci. Tech. A 13, 1941.CrossRefGoogle Scholar
Fiuza, F. et al. 2012 Laser-driven shock acceleration of monoenergetic ion beams. Phys. Rev. Lett. 109, 215 001.Google Scholar
Fiuza, F., Stockem, A., Boella, E., Fonseca, R. A., Silva, L. O., Haberberger, D., Tochitsky, S., Mori, W. B. and Joshi, C. 2013 Ion acceleration from laser-driven electrostatic shocks. Phys. Plas. 20, 056 304.Google Scholar
Fonseca, R. A. et al. 2002 Osiris: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In: Computational Science-ICCS 2002, PT III, Proceedings: Lecture Notes in Computer Science, Vol. 2331 (ed. Sloot, P., Tan, C. J. K., Dongarra, J. J. and Hoekstra, A. G.) Springer-Verlag Berlin, Germany, pp. 342351.Google Scholar
Haberberger, D., Tochitsky, S., Fiuza, F., Gong, C., Fonseca, R. A., Silva, L. O., Mori, W. B. and Joshi, C. 2012 Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nature Phys. 8, 95.Google Scholar
Hatchett, S. P. et al. 2000 Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets. Phys. Plasma 7, 2076.CrossRefGoogle Scholar
Henig, A. et al. 2009 Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett. 103, 045 002.Google Scholar
Mora, P. 2003 Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185 002.Google Scholar
Najmudin, Z., Krushelnick, K., Tatarakis, M., Clark, E. L., Danson, C. N., Malka, V., Neely, D., Santala, M. I. K. and Dangor, A. E. 2003 The effect of high intensity laser propagation instabilities on channel formation in underdense plasmas. Phys. Plasma 10, 438.Google Scholar
Naumova, N. M., Koga, J., Nakajima, K., Tajima, T., Esirkepov, T. Zg, Bulanov, S. V. and Pegoraro, F. 2001 Polarization, hosing and long time evolution of relativistic laser pulses. Phys. Plasma 8, 4149.Google Scholar
Nilson, P. M. et al. 2010 Plasma cavitation in ultraintense laser interactions with underdense helium plasmas. New J. Phys. 12, 045 014.Google Scholar
Palmer, C. A. J. et al. 2011 Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett. 106, 014 801.Google Scholar
Pukhov, A. and Meyer ter Vehn, J. 1998 Relativistic laser-plasma interaction by multi-dimensional particle-in-cell simulations. Phys. Plasma 5, 1880.Google Scholar
Ridgers, C. P., Brady, C. S., Duclous, R., Kirk, J. G., Bennett, K., Arber, T. D. and Bell, A. R. 2013 Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas. Phys. Plasma 20, 056 701.Google Scholar
Ridgers, C. P., Brady, C. S., Duclous, R., Kirk, J. G., Bennett, K., Arber, T. D., Robinson, A. P. L. and Bell, A. R. 2012 Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids. Phys. Rev. Lett. 108, 165 006.Google Scholar
Silva, L. O., Marti, M., Davies, J. R., Fonseca, R. A., Ren, C., Tsung, F. S. and Mori, W. B. 2004 Proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett. 92, 015 002.Google Scholar
Wei, M. S. et al. 2006 Reduction of proton acceleration in high-intensity laser interaction with solid two-layer targets. Phys. Plas. 13, 123 101.Google Scholar
Wilks, S. C., Kruer, W. L., Tabak, M. and Langdon, A. B. 1992 Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383.Google Scholar
Wilks, S. C. et al. 2001 Energetic proton generation in ultra-intense lasersolid interactions. Phys. Plasma 8, 542.Google Scholar
Willingale, L. et al. 2009 Characterization of high-intensity laser propagation in the relativistic transparent regime through measurements of energetic proton beams. Phys. Rev. Lett. 102, 125 002.Google Scholar
Willingale, L., Nilson, P. M., Thomas, A. G. R., Bulanov, S. S., Maksimchuk, A., Nazarov, W., Sangster, T. C., Stoeckl, C. and Krushelnick, K. 2011 High-power, kilojoule laser interactions with near-critical density plasma. Phys. Plasma 18, 056 706.CrossRefGoogle Scholar
Zepf, M. et al. 2001 Fast particle generation and energy transport in laser-solid interactions. Phys. Plasma 8, 2323.Google Scholar