Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T00:53:21.519Z Has data issue: false hasContentIssue false

Behavior of the floating potential in an electronegative sheath as a function of electronegativity and negative ion temperature

Published online by Cambridge University Press:  05 August 2010

M. SHARIFIAN
Affiliation:
Department of Physics, Faculty of Science, Yazd University, P.O. Box 89195-741, Yazd, Iran
B. SHOKRI
Affiliation:
Department of Physics and Laser-Plasma Research Institute, Shahid Beheshti University G.C., P.O. Box, 198396-3113, Evin, Tehran, Iran ([email protected])

Abstract

Through a simple one-dimensional collisionless plasma sheath model, behavior of the floating potential in an electronegative plasma sheath is studied. Specially, the floating potential behavior as a function of the plasma electronegativity for various negative ion temperatures has been studied. It has been observed that negative ion temperature strongly affects the variation of floating potential.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Chen, F. F. 1984 Introduction to Plasma Physics and Controlled Fusion, Vol. 1. New York: Plenum.CrossRefGoogle Scholar
[2]Lieberman, M. A. and Lichtenberg, A. J. 1994 Principles of Plasma Discharge and Material Processing. New York: Wiley.Google Scholar
[3]Oksuz, L. and Hershkowitz, N. 2002 Phys. Rev. Lett. 89, 145001.CrossRefGoogle Scholar
[4]Severn, G. D., Wang, X., Ko, E. and Hershkowitz, N. 2003 Phys. Rev. Lett. 90, 145001.CrossRefGoogle Scholar
[5]Delzanno, G. L., Lapenta, G. and Rosenberg, M. 2004 Phys. Rev. Lett. 92, 035002.CrossRefGoogle Scholar
[6]Stamate, E. and Sugai, H. 2005 Phys. Rev. Lett. 94, 125004.CrossRefGoogle Scholar
[7]Demidov, V. I., DeJoseph, C. A. Jr and Kudryavtsev, A. A. 2005 Phys. Rev. Lett. 95, 215002.CrossRefGoogle Scholar
[8]Hershkowitz, N. 2005 Phys. Plasmas 12, 055502.CrossRefGoogle Scholar
[9]Li, Ming, Vyvoda, Michael A., Dew, Steven K. and Brett, Michael J. 2000 IEEE Trans. on Plasma Sci. 28, 248.Google Scholar
[10]Ping, D., Zhengxiong, W., Wenchun, W., Jinyuan, L., Yue, L., Xiaogang, W. 2005 Plasma Sci. Technol. 7, 2649.CrossRefGoogle Scholar
[11]Howling, A. A., Dorier, J.-L. and Hollenstein, Ch. 1993 Appl. Phys. Lett. 62, 1341.CrossRefGoogle Scholar
[12]Lin, Y. and Overzet, L. J. 1993 Appl. Phys. Lett. 62, 675.CrossRefGoogle Scholar
[13]Passchier, J. D. P. and Geedheer, W. J. 1993 J. Appl. Phys. 73, 1073.CrossRefGoogle Scholar
[14]Hrach, R., Sedlak, D., Vicher, M. and Simek, J. 2004 Thin Solid Films. 459, 137.CrossRefGoogle Scholar
[15]Palop, J. I. F., Ballesteros, J., Hernandez, M. A. and Crespo, R. M. 2007 Plasma Sources Sci. Technol. 16, S76.CrossRefGoogle Scholar
[16]Shindo, H. and Horiike, Y. 1991 Jpn. J. Appl. Phys. 30, 161.CrossRefGoogle Scholar
[17]Palop, J. I. F., Colomer, V., Ballesteros, J., Herncindez, M. A. and Dengra, A. 1996 Surf. Coat. Technol. 84, 341.CrossRefGoogle Scholar
[18]Braithwaite, N. St. J. and Allen, J. E. 1988 J. Phys. D: Appl. Phys. 21, 1733.CrossRefGoogle Scholar