Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T07:42:01.187Z Has data issue: false hasContentIssue false

Behavior of dust particles in cylindrical discharges: Structure formation, mixture and void, effect of gravity

Published online by Cambridge University Press:  21 July 2014

Hiroo Totsuji*
Affiliation:
ISS Science Project Office, ISAS, JAXA, Tsukuba, Ibaraki 305-8505, Japan Okayama University, Okayama 700-8530, Japan
*
Email address for correspondence: [email protected]

Abstract

Theoretical and numerical works on dusty plasmas with cylindrical symmetry are presented. The main purpose has been to investigate behavior of dust particles in strongly coupled dusty plasmas which are expected to be realized in the planned experiments by PK-4 on the International Space Station and experiments by PK-4J, a similar apparatus constructed in Japan. The distribution of dust particles is analyzed on the basis of the drift-diffusion equations and, with the effect of discreteness taken into account, structure formations are numerically simulated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fortov, V. E., Ivlev, A. V., Khrapak, S. A., Khrapak, A. G. and Morfill, G. E. 2005 a Complex (dusty) plasmas: current status, open issues, perspectives. Physics Reports 421, 1103.CrossRefGoogle Scholar
Fortov, V., Morfill, G., Petrov, O., Thoma, M., Usachev, A., Hoefner, H., Zobin, A., Kretschmer, M., Ratynskaia, S., Fink, M., et al. 2005 b The project ‘plasmakristall-4’ (pk-4) - a new stage in investigations of dusty plasmas under microgravity conditions: first results and future plans. Plasma Phys. Control. Fusion 47, B537B549.Google Scholar
Hamaguchi, S. and Farouki, R. T. 1994 Thermodynamics of strongly coupled yukawa systems near the one component plasma limit. i. derivation of the excess energy. J. Chem. Phys. 101, 9876.Google Scholar
Mitic, S., Klumov, B. A., Konopka, U., Thoma, M. H. and Morfill, G. E. 2008 Structural properties of complex plasmas in a homogeneous dc discharge. Phys. Rev. Lett. 101, 125002125005.Google Scholar
Morfill, G. E. and Ivlev, A. V. 2009 Complex plasmas: an interdisciplinary research field. Rev. Mod. Phys. 81, 13531404.Google Scholar
Morfill, G. E., Thomas, H. M., Konopka, U., Rothermel, H., Zuzic, M., Ivlev, A. and Goree, J. 1999 Condensed plasmas under microgravity. Phys. Rev. Lett. 83, 15981601.Google Scholar
Rosenfeld, Y. 1994 Adiabatic pair potential for charged particulates in plasmas and electrolytes. Phys. Rev. E 49, 4425.CrossRefGoogle ScholarPubMed
Thomas, H. M., Morfill, G. E., Fortov, V. E., Ivlev, A. V., Molotkov, V. I., Lipaev, A. M., Hagl, T., Rothermel, H., Khrapak, S. A., Suetterlin, R. K.et al., 2008 Complex plasma laboratory pk-3 plus on the international space station. New J. Phys. 10, 033036.CrossRefGoogle Scholar
Totsuji, H., Ogawa, T., Totsuji, C. and Tsuruta, K. 2005 a Structure of spherical yukawa clusters: A model for dust particles in dusty plasmas in an isotropic environment. Phys. Rev. E 72, 036406–1–036406–6.Google Scholar
Totsuji, H. and Totsuji, C. 2011 Structures of yukawa and coulomb particles in cylinders: Simulations for fine particle plasmas and colloidal suspensions. Phys. Rev. E 84, 015401–1(R)–015401–4.Google Scholar
Totsuji, H., Totsuji, C., Ogawa, T. and Tsuruta, K. 2005 b Ordering of dust particles in dusty plasmas under microgravity. Phys. Rev. E 71, 045401–1(R)–045401–4.CrossRefGoogle ScholarPubMed