Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T14:43:36.091Z Has data issue: false hasContentIssue false

Atypical gravito-electrostatic fluctuations in the presence of active ion-inertial dynamics

Published online by Cambridge University Press:  14 March 2016

B. Borah
Affiliation:
Department of Physics, Tezpur University, Napaam-784028, Tezpur, Assam, India
A. Haloi
Affiliation:
Department of Physics, Tezpur University, Napaam-784028, Tezpur, Assam, India
P. K. Karmakar*
Affiliation:
Department of Physics, Tezpur University, Napaam-784028, Tezpur, Assam, India
*
Email address for correspondence: [email protected]

Abstract

The plasmas in space, cosmic and astrophysical environments are long known to consist of numerous massive ionic components contributing to various wave instability fluctuation phenomena. Indeed, the ion-inertial effects need to be incorporated into realistic analyses, rather than treating the gravitating ionic species traditionally as a Boltzmann distributed fluid. Herein, we present an atypical theoretical model setup to study gravito-electrostatic mode-fluctuations in self-gravitating inhomogeneous interstellar dust molecular clouds (DMCs) on the astrophysical fluid scales of space and time. The main goal is focused on investigating the influence of self-consistent dynamic ion-inertial effects on the stability. Methodological application of standard multiple scaling techniques reduces the basic plasma structure equations into a unique pair of decoupled Korteweg–de Vries (KdV) equations for the weak fluctuations. In contrast, the fully nonlinear counterparts are shown to evolve as a new gravito-electrostatically coupled pair of the Sagdeev energy-integral equations. In both the perturbation regimes, excitation of two distinct eigenmode classes – electrostatic compressive solitons and self-gravitational rarefactive solitons with unusual and unique parametric features – is demonstrated and portrayed. The graphical shape analysis reflects new plasma conditions for such eigenspectral patterns to coevolve in realistic interstellar parameter windows hitherto remaining unexplored. It is seen that the inertial ions play a destabilizing influential role leading to enhanced fluctuations toward establishing a reorganized gravito-electrostatic equilibrium structure. Finally, we discuss the consistency of our results in the framework of existing inertialess ion theories, experimental findings and multiple space satellite-based observations, together with new implications.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alinejad, H. 2010 Dust ion-acoustic solitary and shock waves in a dusty plasma with non-thermal electrons. Astrophys. Space Sci. 327, 131137.CrossRefGoogle Scholar
Barkan, A., Merlino, R. L. & D’Angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2, 35633565.CrossRefGoogle Scholar
Berthomier, M., Pottelette, R., Muschietti, L., Roth, I. & Carlson, C. W. 2003 Scaling of 3D solitary waves observed by FAST and POLAR. Geophys. Res. Lett. 30, 15.Google Scholar
Borah, B. & Karmakar, P. K. 2015 Pulsational mode fluctuations and their basic conservation laws. Adv. Space Res. 55, 416427.Google Scholar
Burman, S. & Chowdhury, A. R. 2002 Solitary waves in self-gravitating dusty plasma. Chaos, Solitons Fractals 13, 973979.Google Scholar
Cadez, V. M. 1990 Applicability problem of Jeans criterion to a stationary self-gravitating cloud. Astron. Astrophys. 235, 242244.Google Scholar
Chen, J.-H. & Wei, N.-X. 2009 Effects of adiabatic dust charge fluctuation and particles collisions on dust-acoustic solitary waves in three-dimensional magnetized dusty plasmas. Commun. Theor. Phys. 51, 524528.Google Scholar
Dwivedi, C. B., Sen, A. K. & Bujarbarua, S. 1999 Pulsational mode of gravitational collapse and its impact on the star formation. Astron. Astrophys. 345, 10491053.Google Scholar
El-Zein, Y., Sheridan, T. E., Lonngren, K. E. & Horton, W. 1999 Excitation of ion acoustic solitons from grids. J. Plasma Phys. 61, 161168.Google Scholar
Ergun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., Delory, G. T., Peria, W., Chaston, C. C., Ternerin, M., Roth, I., Muschietti, L. et al. 1998 FAST satellite observation of large-amplitude solitary structure. Geophys. Res. Lett. 25, 20412044.CrossRefGoogle Scholar
Franz, J. R. & Kintner, P. M. 1998 POLAR observations of coherent electric field structures. Geophys. Res. Lett. 25, 12771280.CrossRefGoogle Scholar
Guo, Z.-R., Yang, Z.-Q., Yin, B.-X. & Sun, M.-Z. 2010 Nonlinear acoustic waves in a collisional self-gravitating dusty plasma. Chin. Phys. B 19, 115203,1–5.CrossRefGoogle Scholar
Haloi, A. & Karmakar, P. K. 2015 Nonlinear gravito-electrostatic waves in self-gravitating complex plasma in presence of ion-drag effects. Astrophys. Space Sci. 358, 41,1–9.CrossRefGoogle Scholar
Hopkins, P. F., Narayanan, D. & Murray, N. 2013 The meaning and consequences of star formation criteria in galaxy models with resolved stellar feedback. Mon. Not. R. Astron. Soc. 432, 26472653.Google Scholar
Jacobs, C. & Poedts, S. 2011 Apolytropic model for the solar wind. Adv. Space Res. 48, 19581966.Google Scholar
Karmakar, P. K. 2011 Nonlinear stability of pulsational mode of gravitational collapse in self-gravitating hydrostatically bounded dust molecular cloud. Pramana – J. Phys. 76, 945956.CrossRefGoogle Scholar
Karmakar, P. K. & Borah, B. 2012 New nonlinear eigenmodes of a self-gravitating spherical charged dust molecular cloud. Phys. Scr. 86, 025503,1–11.Google Scholar
Klessen, R. S., Krumholz, M. R. & Heitsch, F. 2011 Numerical star-formation studies – A status report. Adv. Sci. Lett. 4, 258–185.Google Scholar
Lakhina, G. S, Singh, S. V. & Kakad, A. P. 2010 Ion- and electro-acoustic solitons and double layers in multi-component space plasma. Adv. Space Res. 47, 15581567.CrossRefGoogle Scholar
Lakshmanan, M. & Rajasekar, S. 2003 Nonlinear Dynamics, Integrability, Chaos, and Patterns. Springer.Google Scholar
Mace, R. L. & Hellberg, M. A. 1993 Dust-acoustic double layers: ion inertial effects. Planet. Space Sci. 41, 235244.Google Scholar
Maharaj, S. K., Bharuthram, R., Singh, S. V. & Lakhina, G. L. 2015 Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas. Phys. Plasmas 22, 032313,1–11.Google Scholar
Mamun, A. A. 1999 Arbitrary amplitude dust-acoustic solitary structures in a three-component dusty plasma. Astrophys. Space Sci. 268, 443454.Google Scholar
Mamun, A. A., Cairns, R. A. & Shukla, P. K. 1996 Solitary potentials in dusty plasmas. Phys. Plasmas 3, 702704.Google Scholar
Mamun, A. A. & Shukla, P. K. 2002 Electrostatic solitary and shock structures in dusty plasmas. Phys. Scr. T 98, 107114.Google Scholar
Merlino, R. L. & D’Angelo, N. 2005 Electron and ion inertia effects on current-driven collisional dust acoustic, dust ion acoustic, and ion acoustic instabilities. Phys. Plasmas 12, 054504,1–4.CrossRefGoogle Scholar
Merlino, L., Heinrich, J. R., Kim, H.-K. & Meyer, J. K. 2012 Dusty plasmas: experiments on nonlinear dust acoustic waves, shocks and structures. Plasma Phys. Control. Fusion 54, 124014,1–10.Google Scholar
Misra, A. P. & Chowdhury, A. R. 2006 Dust-acoustic waves in a self-gravitating complex plasma with trapped electrons and nonisothermal ions. Eur. Phys. J. D 37, 105113.Google Scholar
Misra, A. P., Chowdhury, K. R. & Chowdhury, A. R. 2005 Acoustic waves in a self-gravitating collisional dusty plasma. Phys. Scr. 71, 207212.Google Scholar
Omur, Y., Kojima, H., Miki, N., Mukai, T., Matsumoto, H. & Anderson, R. 1999 Electrostatic solitary waves carried by diffused electron beams observed by the Geotail spacecraft. J. Geophys. Res. 104, 1462714637.Google Scholar
Pandey, B. P. & Dwivedi, C. B. 1996 Ion dynamics and gravitational instability of a dusty plasma. J. Plasma Phys. 55, 395400.Google Scholar
Pandey, B. P., Holst, B. V. D., Vranjes, J. & Poedts, S. 2003 Jeans instability of an inhomogeneous streaming dusty plasma. Pramana – J. Phys. 61, 109120.CrossRefGoogle Scholar
Pandey, B. P., Vranjes, J., Poedts, S. & Shukla, P. K. 2002 The pulsational mode in the presence of dust charge fluctuations. Phys. Scr. 65, 513517.Google Scholar
Paul, S. N., Roychowdhury, K., Burman, S., Roychowdhury, A. & Paul, B. 2006 On the existence of ion-acoustic solitary waves in a gravitating dusty plasma having charge fluctuation. Czech. J. Phys. 54, 14531460.Google Scholar
Paul, S. N., Pakira, G., Paul, B. & Ghosh, B. 2011 Ion-acoustic solitary waves in a self-gravitating dusty plasma having two-temperature electrons. World Acad. Sci. Engng Technol. 5, 472477.Google Scholar
Rao, N. N., Shukla, P. K. & Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543546.Google Scholar
Sagdeev, R. Z. 1966 Cooperative phenomena and shock waves in collisional plasmas. In Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 4, pp. 2391. Consultants Bureau.Google Scholar
Shalini & Saini, N. S. 2015 Dust ion acoustic rogue waves in superthermal warm ion plasma. J. Plasma Phys. 81, 905810316,1–16.Google Scholar
Shukla, P. K. 2002 Dust Plasma Interaction in Space, p. 185. Nova Science Publishers.Google Scholar
Shukla, P. K. & Mamun, A. A. 2003 Solitons, shocks and vortices in dusty plasmas. New J. Phys. 5, 17.117.37.Google Scholar
Shukla, P. K. & Stenflo, L. 2006 Jeans instability in a self-gravitating dusty plasma. Proc. R. Soc. Lond. A 462, 403407.Google Scholar
Spitzer, L. Jr. 2004 Physical Processes in the Interstellar Medium. Wiley-VCH Verlag GmbH & Co. KGaA.Google Scholar
Verheest, F. 1996 Waves and instabilities in dusty space plasmas. Space Sci. Rev. 77, 267302.Google Scholar
Verheest, F. 2000 Waves in Dusty Space Plasmas. Kluwer.Google Scholar
Verheest, F. & Shukla, P. K. 1997 Nonlinear waves in multispecies self-gravitating dusty plasmas. Phys. Scr. 55, 8385.Google Scholar
Vranjes, J. 1994 Gravitational instability problem of nonuniform medium. Astrophys. Space Sci. 213, 139142.Google Scholar
Vranjes, J. & Tanakaa, M. Y. 2005 On gravity induced electric field in space plasmas. Phys. Scr. 71, 325328.Google Scholar
Washimi, H. & Taniuti, T. 1966 Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996998.Google Scholar
Watkins, R., Adams, F. C., Fatuzzo, M. & Gehman, C. 1995 Nonlinear waves and solitons in molecular clouds. In Physics and Chemistry of Interstellar Molecular Clouds, Proceedings of the 2nd Cologne-Zermatt Symposium held at Zermatt, Switzerland (ed. Winnewisser, G. & Pelz, G. C.), Lecture Notes in Physics, vol. 459, p. 115. Springer.Google Scholar
Xiao, DE-L., Ma, J. X., Li, Y.-F., Xia, Y. & Yu, M. Y. 2006 Evolution of nonlinear dust-ion-acoustic waves in an inhomogeneous plasma. Phys. Plasmas 13, 052308,1–7.Google Scholar