Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T14:56:55.892Z Has data issue: false hasContentIssue false

Asymmetric oscillatory expansion of a cylindrical plasma

Published online by Cambridge University Press:  19 September 2013

A.R. KARIMOV
Affiliation:
Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13/19, Moscow 127412, Russia Department of Electrophysical Facilities, National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow 115409, Russia
M.Y. YU
Affiliation:
Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, 310027 Hangzhou, China ([email protected])
L. STENFLO
Affiliation:
Department of Physics, Linköping University, SE-58183 Linköping, Sweden

Abstract

Asymmetric oscillatory expansion of a cylindrical plasma layer into vacuum is investigated analytically by solving the fluid equations of the electrons and ions together with the Maxwell's equations. For the problem considered, it is found that the asymmetrical flow components are strongly affected by the symmetrical components, but not the vice versa.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arfken, G. 1985 Mathematical Methods for Physicists. New York: Academic Press.Google Scholar
Bartel, N.et al. 1991 Nature 350, 212.CrossRefGoogle Scholar
Blondin, J., Lundqvist, P. and Chevalier, R. 1996 Astrophys. J. 472, 257.CrossRefGoogle Scholar
Davidson, R. C.et al. 2004 Frontiers For Discovery In High Energy Density Physics, http://www.whitehouse.gov/sites/default/files/hedpreport.pdfGoogle Scholar
Gurevich, A. V. and Pariiskaya, L. V. 1986 Reviews of Plasma Physics, Vol. 10. New York: Consultants Bureau.Google Scholar
Kaladze, T. D., Wu, D. J., Pokhotelov, O. A., Sagdeev, R. Z., Stenflo, L. and Shukla, P. K. 2007 J. Plasma Phys. 73, 131.CrossRefGoogle Scholar
Karimov, A. R. 2009 J. Plasma Phys. 75, 817.CrossRefGoogle Scholar
Karimov, A. R. and Godin, S. M. 2009 Phys. Scr. 80, 035503.CrossRefGoogle Scholar
Karimov, A. R., Stenflo, L. and Yu, M. Y. 2009a Phys. Plasmas 16, 062313.CrossRefGoogle Scholar
Karimov, A. R., Stenflo, L. and Yu, M. Y. 2009b Phys. Plasmas 16, 102303.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2011 J. Plasma Phys. 77, 437.CrossRefGoogle Scholar
Meliani, Z. and Keppens, R. 2010 Astro. Astrophys. 520, L3.CrossRefGoogle Scholar
Mora, P. 2003 Phys. Rev. Lett. 90, 185002.CrossRefGoogle Scholar
Nijboer, J., Lifschitz, A. E. and Goedbloed, J. P. 1997 J. Plasma Phys. 58, 101.CrossRefGoogle Scholar
Sedov, L. 1959 Similarity and Dimensional Methods in Mechanics. New York: Academic Press.Google Scholar
Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 81, 25.CrossRefGoogle Scholar
Stenflo, L. 1990 Phys. Scr. 41, 643.CrossRefGoogle Scholar
Stenflo, L. and Yu, M. Y. 2002 Phys. Plasmas 9, 5129.CrossRefGoogle Scholar
Zel'dovich, Y. B. and Raizer, Y. P. 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Mineola, N. Y.: Dover.Google Scholar