Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T14:59:32.167Z Has data issue: false hasContentIssue false

Arbitrary-amplitude electron-acoustic solitons in a two-electron-component plasma

Published online by Cambridge University Press:  13 March 2009

R. L. Mace
Affiliation:
Plasma Physics Research Institute, Department of Physics, University of Natal, Durban, South Africa
S. Baboolal
Affiliation:
Departments of Applied Mathematics, University of Durban-Westville, Durban, South Africa, and Plasma Physics Research Institute, University of Natal
R. Bharuthram
Affiliation:
Departments of Physics, University of Durban-Westville, Durban, South Africa, and Plasma Physics Research Institute, University of Natal
M. A. Hellberg
Affiliation:
Plasma Physics Research Institute, Department of Physics, University of Natal, Durban, South Africa

Abstract

Motivated by plasma and wave measurements in the cusp auroral region, we have investigated electron-acoustic solitons in a plasma consisting of fluid ions, a cool fluid electron and a hot Boltzmann electron component. A recently described method of integrating the full nonlinear fluid equations as an initial-value problem is used to construct electron-acoustic solitons of arbitrary amplitude. Using the reductive perturbation technique, a Korteweg-de Vries equation, which includes the effects of finite cool-electron and ion temperatures, is derived, and results are compared with the full theory. Both theories admit rarefactive soliton solutions only. The solitons are found to propagate at speeds greater than the electron sound speed (ε0c)½υε, and their profiles are independent of ion parameters. It is found that the KdV theory is not a good approximation for intermediate-strength solitons. Nor does it exhibit the fact that the cool- to hot-electron temperature ratio restricts the parameter range over which electron-acoustic solitons may exist, as found in the arbitrary-amplitude calculations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aref'ev, V. I. 1970 Soviet Phys. Tech. Phys. 14, 1487.Google Scholar
Baboolal, S., Bharuthram, R. & Hellberg, M. A. 1988 J. Plasma Phys. 40, 163.CrossRefGoogle Scholar
Baboolal, S., Bharuthram, R. & Hellberg, M. A. 1989 J. Plasma Phys. 41, 341.CrossRefGoogle Scholar
Baboolal, S., Bharuthram, R. & Hellberg, M. A. 1991 J. Plasma Phys. (submitted).Google Scholar
Bharuthram, R. & Shukla, P. K. 1988 Astrophys. Space Sci. 149, 127.CrossRefGoogle Scholar
Das, U. N., Goswami, K. S. & Bujarbarua, S. 1989 Contrib. Plasma Phys. 29, 293.CrossRefGoogle Scholar
Dey, M., Goswami, K. S. & Bujarbarua, S. 1988 Physica, B 152, 385.CrossRefGoogle Scholar
Gary, S. P. 1987 Phys. Fluids, 30, 2745.CrossRefGoogle Scholar
Gary, S. P. & Tokar, R. L. 1985 Phys. Fluids, 28, 2439.CrossRefGoogle Scholar
Goswami, K. S. & Bujarbarua, S. 1987 Nuovo Cim. 9D, 1133.CrossRefGoogle Scholar
Goswami, K. S., Kalita, M. K. & Bujarbarua, S. 1986 Plasma Phys. Contr. Fusion, 28, 289.CrossRefGoogle Scholar
Guha, S. & Dwivedi, C. B. 1984 J. Plasma Phys. 32, 283.CrossRefGoogle Scholar
Kalita, B. C. & Kalita, M. K. 1900 Phys. Fluids, B 2, 674.CrossRefGoogle Scholar
Kim, K. Y. 1983 Phys. Lett. 97A, 45.CrossRefGoogle Scholar
Lashmore-Davies, C. N. & Martin, T. J. 1973 Nucl. Fusion, 13, 193.CrossRefGoogle Scholar
Lin, C. S., Burch, J. L., Shawhan, S. D. & Gurnett, D. A. 1984 J. Geophys. Res. 89, 925.CrossRefGoogle Scholar
Lin, C. S. & Winske, D. 1987 J. Geophys. Res. 92, 7569.CrossRefGoogle Scholar
Lin, C. S., Winske, D. & Tokar, R. L. 1985 J. Geophys. Res. 90, 8269.CrossRefGoogle Scholar
Mace, R. L. & Hellberg, M. A. 1990 J. Plasma Phys. 43, 239.CrossRefGoogle Scholar
Sagdeev, R. Z. 1966 Reviews of Plasma Physics, vol. 4 (ed. Leontovich, M. A.), p. 23. Consultants Bureau.Google Scholar
Schriver, D. & Ashour-Abdalla, M. 1987 J. Geophys. Res. 92, 5807.CrossRefGoogle Scholar
Tagare, S. G. 1973 Plasma Phys. 15, 1247.CrossRefGoogle Scholar
Tokar, R. L. & Gary, S. P. 1984 Geophys. Res. Lett. 11, 1180.CrossRefGoogle Scholar
Verheest, F. 1988 J. Plasma Phys. 39, 71.CrossRefGoogle Scholar
Washimi, H. & Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Watanabe, K. & Taniuti, T. 1977 J. Phys. Soc. Japan, 43, 1819.CrossRefGoogle Scholar
Yu, M. Y. & Shukla, P. K. 1983 J. Plasma Phys. 29, 409.CrossRefGoogle Scholar