Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T01:51:50.806Z Has data issue: false hasContentIssue false

Arbitrary amplitude Langmuir solitons in a relativistic electron–positron plasma

Published online by Cambridge University Press:  13 December 2011

I. J. LAZARUS
Affiliation:
Department of Physics, Durban University of Technology, Durban, South Africa
R. BHARUTHRAM
Affiliation:
University of the Western Cape, Modderdam Road, Bellville, Cape Town, South Africa
S. V. SINGH
Affiliation:
Indian Institute of Geomagnetism, Navi Mumbai, India ([email protected]) School of Physics, University of KwaZulu-Natal, Durban, South Africa
G. S. LAKHINA
Affiliation:
Indian Institute of Geomagnetism, Navi Mumbai, India ([email protected])

Abstract

The arbitrary amplitude Langmuir solitons are investigated in an unmagnetized, warm, relativistic plasma, consisting of electrons and positrons. Both the species are considered to have equal non-relativistic temperatures, but can have arbitrary relativistic drift speeds, and their dynamics are governed by fluid equations. Using the Sagdeev psuedo-potential approach, the effects of drift speed, Mach number, and thermal temperature on the amplitude and width of the Langmuir solitons are investigated. For the parameters considered, only rarefactive solitons are found. These solitons represent dip in electron density or electron holes in the configuration space. Existence domain of the Langmuir solitons is limited by the minimum and maximum Mach numbers for given parameters. An increase in the electron (positron) temperature leads to an increase in the Langmuir soliton amplitude and their half-widths. On the other hand, increasing the electron (positron) drift speeds results in decreasing soliton amplitudes and their half-widths. For some typical parameters corresponding to the pulsar magnetosphere, namely electron density ~106 cm−3 and electron thermal velocity of one-tenth of the velocity of light, the electric field of the Langmuir solitons can be of the order of (3–24)kV/m. The presence of such large amplitude electrostatic solitary structures may accelerate electrons and positrons and also produce fine structures of (1–5) microseconds in pulsar radio emissions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelsalm, U. M., Moslem, W. M. and Shukla, P. K. 2008 Phys. Lett. A 372, 4057.CrossRefGoogle Scholar
Beskin, V. S., Gurevich, A. V. and Istomin, Ya. N. 1983 Soviet Phys. JETP 58, 235.Google Scholar
Bharuthram, R. and Yu, M. Y. 1993 Astrophys. Space Sci. 207, 197.CrossRefGoogle Scholar
Eichler, D., Livio, M., Piran, T. and Schramm, D. N. 1989 Nature 340, 126.CrossRefGoogle Scholar
Ghosh, S. S., Pickett, J. S., Lakhina, G. S., Winningham, J. D., Lavraud, B. and Decreau, P. M. E. 2008 J. Geophys. Res. 113, A06218, doi:10.1029/2007JA012768Google Scholar
Gill, T. S., Singh, A., Kaur, H., Saini, N. S. and Bala, P. 2007 Phys. Lett. A 361, 364.CrossRefGoogle Scholar
Goodman, J. 1986 Astrophys. J. 308, L47.CrossRefGoogle Scholar
Gurevich, A. V. and Istomin, Ya. N. 1985 Soviet Phys. JETP 62, 1.Google Scholar
Hartman, R. C., Villata, M., Balonek, T. J., Bertsch, D. L., Bock, H., Böttcher, M., Carini, M. T., Collmar, W., De Francesco, G., Ferrara, E. C. et al. , 2001 Astrophys. J. 558, 583.CrossRefGoogle Scholar
Henri, G., Pelletier, G. and Roland, J. 1993 Astrophys. J. 404, L41.CrossRefGoogle Scholar
Lakhina, G. S. and Verheest, F. 1997 Astrophys. Space Sci. 253, 97.CrossRefGoogle Scholar
Melrose, D. B. 1978 Astrophys. J. 225, 557.CrossRefGoogle Scholar
Paczyński, B. 1986 Astrophys. J. 308, L43.CrossRefGoogle Scholar
Porkolab, M. and Goldman, M. V. 1976 Phys. Fluids 19, 872.CrossRefGoogle Scholar
Verheest, F. and Lakhina, G. S. 1996 Astrophys. Space Sci. 240, 215.CrossRefGoogle Scholar
Wei, R. and Chen, Y. 2005 Physica Scripta 71, 648.CrossRefGoogle Scholar
Yu, M. Y. 1978 J. Math. Phys. 19, 816.CrossRefGoogle Scholar
Yu, M. Y., Shukla, P. K. and Rao, N. N. 1984 Astrophys. Space Sci. 107, 327.CrossRefGoogle Scholar
Zank, G. P. and Greaves, R. G. 1995 Phys. Review E, 51, 6079.CrossRefGoogle Scholar