Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T06:51:24.157Z Has data issue: false hasContentIssue false

Anomalous transport coefficients in a turbulent plasma

Published online by Cambridge University Press:  13 March 2009

R. Balescu
Affiliation:
Faculté des Sciences, CP 231, Université Libre de Bruxelles 1050 Bruxolles, Association Euratom – Etat Beige
I. Paiva-Veretennicoff
Affiliation:
Fakulteit van de Wetenschappen, Vrije Universiteit Brussel1050 Brussel

Abstract

A general self-consistent framework is developed for the calculation of transport coefficients in a collisionless, weakly turbulent plasma. These coefficients characterize the response to a perturbation away from a quasi-steady turbulent state, which is assumed to exist as a result of the stabilization of the linear instabilities. It is shown that a purely hydrodynamical description does not exist for plasmas: the macroscopic picture must include non-conserved quantities, which lead to the plasmadynamical (or ‘two-fluid’) picture of the system. The number of independent transport coefficients, necessary for the macroscopic characterization of the plasma, is correspondingly increased as compared with a two- component mixture of two ordinary fluids. The typical turbulent contributions to the transport coefficients are clearly exhibited.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balescu, R. 1975 Equilibrium and Non-equilibrium Statistical Mechanics. WileyGoogle Scholar
Balescu, R. & Paiva-Veretennicoff, I. 1976 J. Plasma Phys.. 16, 128.Google Scholar
Baus, M. 1975 Physica, 78A, 377.CrossRefGoogle Scholar
Baus, M. 1977 Physica, 88 A, 319, 336.CrossRefGoogle Scholar
Braginsky, S. I. 1965 Reviews of Plasma Physics, Consultants Bureau.Google Scholar
Caponi, M. Z. & Krall, N. A. 1975 Phys. Fluids, 18, 699.CrossRefGoogle Scholar
Chapman, S. & Cowling, T. G. 1961 The Mathematical Theory of Non Uniform Gases, 2nd edition. Cambridge University Press.Google Scholar
Cohen, R. S., Spitzer, L. & Routly, P. 1950 Phys. Rev. 80 230.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory, Academic.Google Scholar
Davidson, R. C. & Krall, N. A. 1977 Nucl. Fusion, 17, 1313.CrossRefGoogle Scholar
De Groot, S. & Mazur, P. 1969 Non Equilibrium Thermodynamics. North Holland.Google Scholar
Dirac, P. A. M. m1958 The Principles of Quamtum Mechanics. Clarendon.Google Scholar
Dum, C. J. 1978 Phys. Fluids, 21, 945, 956.CrossRefGoogle Scholar
Faehl, R. J. & Kruer, W. L. 1977 Phys. Fluids, 20, 55.CrossRefGoogle Scholar
Forslund, D. W. 1970 J. Geophys. Res. 75, 17.CrossRefGoogle Scholar
Grad, H. 1949 Commun. Pure Appl. Math. 2, 311.Google Scholar
Guyer, R. A. & Krumhansl, J. A. 1966 Phys. Rev. 148, 766.CrossRefGoogle Scholar
Hinton, F. L. & Hazeltine, R. D. 1976 Rev. Mod. Phys. 48, 239.CrossRefGoogle Scholar
Ichimaru, S. & Nakano, T. 1968 Phys. Rev. 165 231.CrossRefGoogle Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics. Benjamin.Google Scholar
Jancel, R. &. Kahan, T. 1963 Electrodynamique des Plasmas, vol. 1. Dunod.Google Scholar
Klimontovich, Yu. L. 1975 Kinetic Theory of non ideal Gases and non ideal Plasmas. Mir, Moscow (in Russian; English translation in preparation.)Google Scholar
Krall, N. A. & Trivelpiece, A. W. 1973 Principles of Plasma Physics. McGraw-Hill.CrossRefGoogle Scholar
Krommes, J. & Oberman, C. 1976 J. Plasma Phys. 16, 193, 229.CrossRefGoogle Scholar
Malone, R. C., Mc, Crory R. L., Morse, R. L. 1975 Phys. Rev. Lett. 34, 721.CrossRefGoogle Scholar
Manheimer, W. M., Colombant, D. & Flynn, R. 1976 Phys. Fluids, 19 1354.CrossRefGoogle Scholar
Menheimer, W. M. 1977a An Introduction to Trapped-Particle Instatbility in Tokamaks, ERDA Critical Review Series, Washington.Google Scholar
Manheimer, W. M. 1977b Phys. Fluids, 20, 265.CrossRefGoogle Scholar
Morse, P. M. & Feshbach, H. 1953 Methods of Theoretical Physics. McGraw-Hill.Google Scholar
Résibois, P. 1970 J. Statist. Phys. 2, 21.CrossRefGoogle Scholar
Résibois, P. & De Leener, M. 1977 The Classical Theory of Fluids. Wiley.Google Scholar
Shkarofsky, I. P., Johnson, T. W. & Bachinsky, M. P. 1966 The Particle Kinetics of Plasmas. Addison-Wesley.Google Scholar
Silin, V. P., 1973 parametric Action of High-Intensity Radiation on Plasmas (in Russian). Nauks.Google Scholar
Smirnov, V. I. 1961 Linear Algebra and Group Theory. Dover.Google Scholar
Spitzer, L. & Härm, R. 1953 Phys. Rev. 89, 1977.CrossRefGoogle Scholar
Theodosopulu, M., Grecos, A. & Prigogine, I. 1978 Proc. Nat. Acad. Sciences. (To be published.).Google Scholar
Vasu, G. 1976 a J. Plasma Phys. 16, 289.CrossRefGoogle Scholar
Vasu, G. 1976 b J. Plasma Phys. 16, 299.CrossRefGoogle Scholar
Valeo, E. J. & Bernstein, I. B. 1976 Phys. Fluids, 19, 1348.CrossRefGoogle Scholar