Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T13:32:22.739Z Has data issue: false hasContentIssue false

Anomalous temperature relaxation and particle transport in a strongly non-unifrom, fully in ionized Plasma in a stromg mangnetic field

Published online by Cambridge University Press:  13 March 2009

Alf H. Øien
Affiliation:
Department of Applied Mathematics, University of Bergen, Allégaten 55, 5007 Bergen, Norway

Abstract

In classical kinetic and transport theory for a fully ionized plasma in a magnetic field, collision integrals from a uniform theory without fields are used. When the magnetic field is so strong that electrons may gyrate during electron—electron and electron—ion interactions, the form of the collision integrals will be modified. Another modification will stem from strong non-uniformities transverse to the magnetic field B. Using collision terms that explicitly incorporate these effects, we derive in particular the temperature relaxation between electrons and ions and the particle transport transverse to the magnetic field. In both cases collisions between gyrating electrons, which move along the magnetic field, and non-gyrating ions, which move in arbitrary directions at a distance transverse to B from the electrons larger than the electron Larmor radius but smaller than the Debye length, give rise to enhancement factors in the corresponding classical expressions of order In (mion/mel).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balescu, R. 1960 Phys. Fluids 3, 52.CrossRefGoogle Scholar
Braginskii, S. I. 1965 Reviews of Plasma Physics, vol. 1 (ed. Leontovich, M.A.), p. 205. Consultants Bureau.Google Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics. Benjamin.Google Scholar
Ichimaru, S. & Rosenbluth, M.N. 1970 Phys. Fluids 13, 2778.CrossRefGoogle Scholar
Ichimaru, S. & Rosenbluth, M.N. 1971 Plasma Physics and Controlled Nuclear Fusion Research, vol. II, p. 373. IAEA.Google Scholar
Landau, L. 1936 Phys. Z. Sovjetunion 10, 154.Google Scholar
Lenard, A. 1960 Ann. Phys. (NY) 3, 390.CrossRefGoogle Scholar
Montgomery, D. C. & Tidman, D. A. 1964 Plasma Kinetic Theory. McGraw-Hill.Google Scholar
Øien, A. H. 1979 J. Plasma Phys. 21, 401.Google Scholar
Øien, A. H. 1987 J. Plasma Phys. 38, 351.CrossRefGoogle Scholar
Øien, A. H. 1990 a J. Plasma Phys. 43, 189.CrossRefGoogle Scholar
Øien, A. H. 1990 b J. Plasma Phys. 44, 167.Google Scholar
Øien, A. H. 1993 Proceedings III of 21st International Conference on Phenomena in Ionized Gases 19–24 September 1993, Ruhr-Universität Bochum (ed. Ecker, G., Arendt, U. & Bäsler, J.), p. 217.Google Scholar
O'neil, T. M. 1985 Phys. Rev. Lett. 55, 943.Google Scholar
Rostoker, N. 1960 Phys. Fluids 3, 922.CrossRefGoogle Scholar
Schram, P. P. J. M. 1969 Physica 45, 165.Google Scholar
Silin, V. P. 1963 Soviet Phys. JETP 16, 1281.Google Scholar
Su, C. H. 1964 J. Math. Phys. 5, 1273.CrossRefGoogle Scholar
Ware, A. A. 1989 Phys. Rev. Lett. 62, 51.CrossRefGoogle Scholar