Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T08:59:03.987Z Has data issue: false hasContentIssue false

Analytical properties of linear electrostatic waves in two-component quantum and classical plasmas

Published online by Cambridge University Press:  22 August 2018

Shane Rightley*
Affiliation:
Center for Integrated Plasma Physics, Department of Physics, University of Colorado, Boulder, CO 80309-0390, USA Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242, USA
Dmitri Uzdensky
Affiliation:
Center for Integrated Plasma Physics, Department of Physics, University of Colorado, Boulder, CO 80309-0390, USA
*
Email address for correspondence: [email protected]

Abstract

We examine the properties of linear electrostatic waves in unmagnetised quantum and classical plasmas consisting of one or two populations of electrons with analytically tractable distribution functions in the presence of a stationary neutralising ion background. Beginning with the kinetic quantum plasma longitudinal susceptibility, we assess the effects due to increasing complexity of the background distribution function. Firstly, we analyse dispersion and Landau damping in one-component plasmas and consider distribution functions with a variety of analytical properties: the Dirac delta function, the Cauchy profile with two complex first-order poles, the squared Cauchy profile with two second-order poles and the inverse-quartic profile with four first-order poles; we also briefly discuss the non-meromorphic totally and arbitrarily degenerate Fermi–Dirac distribution. In order to study electrostatic instabilities, we then turn to plasmas with two populations of electrons streaming relative to each other in two cases: a symmetric case of two counter-streaming identical populations and a bump-on-tail case with a primary population and a delta-function beam. We obtain the corresponding linear kinetic dispersion relations and evaluate the properties of instabilities when the electron distribution functions are of the delta function, Cauchy, squared Cauchy or inverse-quartic types. In agreement with other studies, we find that in general quantum effects reduce the range of wavelengths for unstable modes at long wavelengths. We also find a second window of instability at shorter wavelengths and elucidate its nature as being due to quantum recoil. We note the possible implications for studies of laboratory and astrophysical quantum plasmas.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbari-Moghanjoughi, M. 2013 White dwarfs as the maximal soft x-ray scatterers. Phys. Plasmas 20 (9), 092902.Google Scholar
Andreev, P. A. 2015 Hydrodynamic and kinetic models for spin- $1/2$ electron–positron quantum plasmas: annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas. Phys. Plasmas 22 (6), 062113.Google Scholar
Andreev, P. A. 2016 NLSE for quantum plasmas with the radiation damping. Mod. Phys. Lett. B 30, 1650180-162.Google Scholar
Andreev, P. A. 2017 Kinetic analysis of spin current contribution to spectrum of electromagnetic waves in spin- $1/2$ plasma. II. Dispersion dependencies. Phys. Plasmas 24 (2), 022115.Google Scholar
Beloborodov, A. M. 2009 Untwisting magnetospheres of neutron stars. Astrophys. J. 703, 10441060.Google Scholar
Beloborodov, A. M. & Thompson, C. 2007 Corona of magnetars. Astrophys. J. 657, 967993.Google Scholar
Bohm, D. & Pines, D. 1950 Screening of electronic interactions in a metal. Phys. Rev. 80, 903904.Google Scholar
Bohm, D. & Pines, D. 1953 A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92, 609625.Google Scholar
Bonitz, M., Binder, R., Scott, D. C., Koch, S. W. & Kremp, D. 1993 Plasmons and instabilities in quantum plasmas. Contrib. Plasma Phys. 33 (5–6), 536539.Google Scholar
Bonitz, M., Binder, R., Scott, D. C., Koch, S. W. & Kremp, D. 1994 Theory of plasmons in quasi-one-dimensional degenerate plasmas. Phys. Rev. E 49 (6), 55355545.Google Scholar
Bret, A. 2007 Filamentation instability in a quantum plasma. Phys. Plasmas 14 (8), 084503.Google Scholar
Bret, A. & Haas, F. 2011 Quantum kinetic theory of the filamentation instability. Phys. Plasmas 18 (7), 072108.Google Scholar
Brodin, G. & Marklund, M. 2008 On the possibility of metamaterial properties in spin plasmas. New J. Phys. 10 (11), 115031.Google Scholar
Brodin, G., Marklund, M., Zamanian, J. & Stefan, M. 2011 Spin and magnetization effects in plasmas. Plasma Phys. Control. Fusion 53 (7), 074013.Google Scholar
Brodin, G., Zamanian, J. & Mendonca, J. T. 2015 The transition from the classical to the quantum regime in nonlinear Landau damping. Phys. Scr. 90 (6), 068020.Google Scholar
Canuto, V. & Ventura, J. 1972 Quantum theory of the dielectric constant of a magnetized plasma and astrophysical applications. I: Theory. Astrophys. Space Sci. 18, 104120.Google Scholar
Chabrier, G., Douchin, F. & Potekhin, A. Y. 2002 Dense astrophysical plasmas. J. Phys.: Condens. Matter 14, 91339139.Google Scholar
Daligault, J. 2014 Landau damping and the onset of particle trapping in quantum plasmas. Phys. Plasmas 21 (4), 040701.Google Scholar
Eliasson, B. & Shukla, P. K. 2010 Dispersion properties of electrostatic oscillations in quantum plasmas. J. Plasma Phys. 76, 7.Google Scholar
Glenzer, S. H., Landen, O. L., Neumayer, P., Lee, R. W., Widmann, K., Pollaine, S. W., Wallace, R. J., Gregori, G., Höll, A., Bornath, T. et al. 2007 Observations of plasmons in warm dense matter. Phys. Rev. Lett. 98 (6), 065002.Google Scholar
Haas, F. 2008 Quantum Weibel instability. Phys. Plasmas 15 (2), 022104.Google Scholar
Haas, F., Bret, A. & Shukla, P. K. 2009 Physical interpretation of the quantum two-stream instability. Phys. Rev. E 80 (6), 066407.Google Scholar
Haas, F. & Lazar, M. 2008 Macroscopic description for the quantum Weibel instability. Phys. Rev. E 77 (4), 046404.Google Scholar
Haas, F., Manfredi, G. & Goedert, J. 2001 Nyquist method for Wigner–Poisson quantum plasmas. Phys. Rev. E 64 (2), 026413.Google Scholar
Haas, F. & Shukla, P. K. 2009 Quantum and classical dynamics of Langmuir wave packets. Phys. Rev. E 79 (6), 066402.Google Scholar
Iqbal, Z. & Andreev, P. A. 2016 Nonlinear separate spin evolution in degenerate electron–positron–ion plasmas. Phys. Plasmas 23 (6), 062320.Google Scholar
Klimontovich, Y. L. & Silin, V. P. 1960 The spectra of systems of interacting particles and collective energy losses during passage of charged particles through matter. Sov. Phys. Uspekhi 3 (1), 84.Google Scholar
Krivitskii, V. S. & Vladimirov, S. V. 1991 Electron oscillation spectrum in a degenerate nonrelativistic plasma. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 100, 14831494.Google Scholar
Lapuerta, V. & Ahedo, E. 2002 General parametric analysis of the linear two-stream instability. Phys. Plasmas 9, 15131519.Google Scholar
Liboff, R. L. 2003 Kinetic Theory: Classical, Quantum, and Relativistic Descriptions. Springer, New York, NY.Google Scholar
Lindhard, J. 1954 On the properties of a gas of charged particles. Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 28 (8).Google Scholar
Marklund, M. & Brodin, G. 2007 Dynamics of spin- $1/2$ quantum plasmas. Phys. Rev. Lett. 98 (2), 025001.Google Scholar
Marklund, M., Brodin, G., Stenflo, L. & Liu, C. S. 2008 New quantum limits in plasmonic devices. Europhys. Lett. 84 (1), 17006.Google Scholar
Marklund, M., Zamanian, J. & Brodin, G. 2010 Spin kinetic theory-quantum kinetic theory in extended phase space. Transp. Theory Stat. Phys. 39, 502523.Google Scholar
Melrose, D.(Ed.) 2013 Quantum Plasmadynamics, Lecture Notes in Physics, vol. 854. Springer.Google Scholar
Melrose, D. B. & Mushtaq, A. 2010a Dispersion in a thermal plasma including arbitrary degeneracy and quantum recoil. Phys. Rev. E 82, 056402.Google Scholar
Melrose, D. B. & Mushtaq, A. 2010b Plasma dispersion function for a Fermi Dirac distribution. Phys. Plasmas 17 (12), 122103.Google Scholar
Moyal, J. E. 1949 Quantum mechanics as a statistical theory. Math. Proc. Camb. Phil. Soc. 45, 99124.Google Scholar
Pines, D. 1961 Classical and quantum plasmas. J. Nucl. Energy C 2 (1), 5.Google Scholar
Pines, D. & Schrieffer, J. R. 1962 Approach to equilibrium of electrons, plasmons, and phonons in quantum and classical plasmas. Phys. Rev. 125, 804812.Google Scholar
Rightley, S. & Uzdensky, D. 2016 Landau damping of electrostatic waves in arbitrarily degenerate quantum plasmas. Phys. Plasmas 23 (3), 030702.Google Scholar
Shukla, P. K. & Eliasson, B. 2010 Nonlinear aspects of quantum plasma physics. Phys.-Uspekhi 53 (1), 51.Google Scholar
Shukla, P. K. & Eliasson, B. 2011 Colloquium: nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83, 885906.Google Scholar
Silin, V. P. 1958 Theory of a degenerate electron liquid. Sov. J. Exp. Theoret. Phys. 6, 387.Google Scholar
Stix, T. H. 1992 Waves in Plasmas. AIP-Press.Google Scholar
Thompson, C. & Beloborodov, A. M. 2005 High-energy emission from magnetars. Astrophys. J. 634, 565569.Google Scholar
Tyshetskiy, Y., Vladimirov, S. V. & Kompaneets, R. 2011 On kinetic description of electromagnetic processes in a quantum plasma. Phys. Plasmas 18 (11), 112104.Google Scholar
Uzdensky, D. A. & Rightley, S. 2014 Plasma physics of extreme astrophysical environments. Rep. Prog. Phys. 77 (3), 036902.Google Scholar
Vladimirov, S. V. & Tyshetskiy, Y. O. 2011 On description of a collisionless quantum plasma. Phys.-Uspekhi 54 (12), 1243.Google Scholar
Wigner, E. 1932 On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749759.Google Scholar