Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T07:50:59.393Z Has data issue: false hasContentIssue false

An introduction to light extinction spectrometry as a diagnostic for dust particle characterisation in dusty plasmas

Published online by Cambridge University Press:  30 August 2016

S. Barbosa
Affiliation:
Université Aix-Marseille, CNRS, UMR 7343, IUSTI, 13453 Marseille CÉDEX 13, France
F. R. A. Onofri*
Affiliation:
Université Aix-Marseille, CNRS, UMR 7343, IUSTI, 13453 Marseille CÉDEX 13, France
L. Couëdel
Affiliation:
Université Aix-Marseille, CNRS, UMR 7345, PIIM, 13397 Marseille CÉDEX 20, France
M. Wozniak
Affiliation:
Université Aix-Marseille, CNRS, UMR 7343, IUSTI, 13453 Marseille CÉDEX 13, France
C. Montet
Affiliation:
Université Aix-Marseille, CNRS, UMR 7343, IUSTI, 13453 Marseille CÉDEX 13, France
C. Pelcé
Affiliation:
Université Aix-Marseille, CNRS, UMR 7343, IUSTI, 13453 Marseille CÉDEX 13, France
C. Arnas
Affiliation:
Université Aix-Marseille, CNRS, UMR 7345, PIIM, 13397 Marseille CÉDEX 20, France
L. Boufendi
Affiliation:
Université d’Orléans, CNRS, UMR 6606, GREMI, 45000 Orléans, France
E. Kovacevic
Affiliation:
Université d’Orléans, CNRS, UMR 6606, GREMI, 45000 Orléans, France
J. Berndt
Affiliation:
Université d’Orléans, CNRS, UMR 6606, GREMI, 45000 Orléans, France
C. Grisolia
Affiliation:
CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
*
Email address for correspondence: [email protected]

Abstract

In this article, a detailed introduction of the light extinction spectrometry (LES) diagnostics is given. LES allows the direct in situ measurement of the particle size distribution and absolute concentration of dust clouds levitating in plasmas. Using a relatively simple and compact experimental set-up, the dust cloud parameters can be recovered with a good accuracy making minimum assumptions on their physical properties. Special emphases are given to the inversion procedure of light extinction spectra and all the required particle shape, refractive index and light extinction models. The parameter range and the limitations of LES are discussed. Two measurements in low-pressure gas discharges are presented: (i) in a direct-current (DC) glow discharge in which nanoparticles are growing from the sputtering of a tungsten cathode and (ii) in an argon–silane radio-frequency discharge. They demonstrate the capabilities of the LES technique to characterise, in situ and in real-time, the growth dynamics of nanoparticles in the size range 5–100 nm and volume concentrations in the range from a few ppb to a few ppm.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annaratone, B. M., Elskens, Y., Arnas, C., Antonova, T., Thomas, H. M. & Morfill, G. E. 2009 Agglomeration of mesoscopic particles in plasma. New J. Phys. 11 (10), 103013.CrossRefGoogle Scholar
Asano, S. & Yamamoto, G. 1975 Light scattering by a spheroidal particle. Appl. Opt. 14 (1), 2949.Google Scholar
Aster, R. C., Borchers, B. & Thurber, C. H. 2012 Parameter Estimation and Inverse Problems, International Geophysics, vol. 90. Academic.Google Scholar
Barbosa, S., Couëdel, L., Arnas, C., Kishor Kumar, K., Pardanaud, C. & Onofri, F. R. A. 2016 In situ characterisation of the dynamics of a growing dust particle cloud in a direct-current argon glow discharge. J. Phys. D: Appl. Phys. 49 (4), 045203.CrossRefGoogle Scholar
Berndt, J., Kovačević, E., Stefanović, I., Stepanović, O., Hong, S. H., Boufendi, L. & Winter, J. 2009 Some aspects of reactive complex plasmas. Contrib. Plasma Physics 49 (3), 107133.Google Scholar
Bohren, C. F. 1986 Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J. Atmos. Sci. 43 (5), 468475.Google Scholar
Bohren, C. F. & Huffman, D. R. 1998 Absorption and Scattering of Light by Small Particles. Wiley & Sons.CrossRefGoogle Scholar
Borghese, F., Denti, P. & Saija, R. 1994 Optical properties of spheres containing several spherical inclusions. Appl. Opt. 33 (3), 484493.CrossRefGoogle ScholarPubMed
Boufendi, L. & Bouchoule, A. 1994 Particle nucleation and growth in a low-pressure argon-silane discharge. Plasma Sources Sci. Technol. 3 (3), 262270.Google Scholar
Butler, T. J. A., Miller, J. L. & Orr-Ewing, A. J. 2007 Cavity ring-down spectroscopy measurements of single aerosol particle extinction. i: the effect of position of a particle within the laser beam on extinction. J. Chem. Phys. 126 (17), 174302.Google Scholar
Calba, C., Méès, L., Rozé, C. & Girasole, T. 2008 Ultrashort pulse propagation through a strongly scattering medium: simulation and experiments. J. Opt. Soc. Am. A 25 (7), 15411550.Google Scholar
Cavarroc, M., Jouanny, M. C., Radouane, K., Mikikian, M. & Boufendi, L. 2006a Self-excited instability occurring during the nanoparticle formation in an $\text{AR}/\text{SIH}_{4}$ low pressure radio frequency plasma. J. Appl. Phys. 99, 064301.CrossRefGoogle Scholar
Cavarroc, M., Mikikian, M., Perrier, G. & Boufendi, L. 2006b Single-crystal silicon nanoparticles: an instability to check their synthesis. Appl. Phys. Lett. 89 (1), 013107.CrossRefGoogle Scholar
Chakrabarty, R. K., Moosmüller, H., Arnott, W. P., Garro, M. A., Tian, G., Slowik, J. G., Cross, E. S., Han, J. H., Davidovits, P., Onasch, T. B. et al. 2009 Low fractal dimension cluster-dilute soot aggregates from a premixed flame. Phys. Rev. Lett. 102, 235504.Google Scholar
Couëdel, L., Kishor Kumar, K. & Arnas, C. 2014 Detrapping of tungsten nanoparticles in a direct-current argon glow discharge. Phys. Plasmas 21 (12), 123703.Google Scholar
Crawley, G., Cournil, M. & Di Benedetto, D. 1997 Size analysis of fine particle suspensions by spectral turbidimetry: potential and limits. Powder Technol. 91, 197208.CrossRefGoogle Scholar
Deepak, A. & Box, M. A. 1978a Forwardscattering corrections for optical extinction measurements in aerosol media. 1: monodispersions. Appl. Opt. 17 (18), 29002908.Google Scholar
Deepak, A. & Box, M. A. 1978b Forwardscattering corrections for optical extinction measurements in aerosol media. 2: polydispersions. Appl. Opt. 17 (18), 31693176.CrossRefGoogle ScholarPubMed
Dobbins, R. A. & Megaridis, C. M. 1991 Absorption and scattering of light by polydisperse aggregates. Appl. Opt. 30 (33), 47474754.CrossRefGoogle ScholarPubMed
Dominique, C. & Arnas, C. 2007 Cathode sputtering and the resulting formation of carbon nanometer-size dust. J. Appl. Phys. 101 (12), 123304.Google Scholar
Draine, B. T. & Flatau, P. J. 1994 Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11 (4), 14911499.CrossRefGoogle Scholar
Farias, T. L., Köylü, Ü. Ö. & Carvalho, M. G. 1996 Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates. Appl. Opt. 35 (33), 65606567.CrossRefGoogle ScholarPubMed
Gebauer, G. & Winter, J. 2003 In situ nanoparticle diagnostics by multi-wavelength Rayleigh–Mie scattering ellipsometry. New J. Phys. 5, 38.CrossRefGoogle Scholar
Glasse, B., Riefler, N. & Fritsching, U. 2015 Intercomparison of numerical inversion algorithms for particle size determination of polystyrene suspensions using spectral turbidimetry. J. Spectrosc. 2015, 10.Google Scholar
Guinier, A., Fournet, G., Walker, C. B. & Yudowitch, K. L. 1995 Small Angle Scattering of X-Rays. Wiley.Google Scholar
Hansen, P. C. 1994 Regularization tools, a matlab package for analysis and solution and solution of discrete ill-posed problems. Numer. Algorithms 6 (1), 135.CrossRefGoogle Scholar
Hansen, P. C. 1998 Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, Mathematical Modeling and Computation, vol. xx. SIAM.Google Scholar
Hansen, P. C., Pereyra, V. & Scherer, G. 2013 Least Squares Data Fitting with Applications. Johns Hopkins University Press.Google Scholar
Hirleman, D. E. 1988 Modeling of multiple scattering effects in fraunhofer diffraction particle size analysis. Part. Part. Syst. Charact. 5 (2), 5765.Google Scholar
Hong, S., Berndt, J. & Winter, J. 2003 Growth precursors and dynamics of dust particle formation in the $\text{Ar}/\text{CH}_{4}$ and $\text{Ar}/\text{C}_{2}\text{H}_{2}$ plasmas. Plasma Sources Sci. Technol. 12 (1), 46.CrossRefGoogle Scholar
Hong, S. H. & Winter, J. 2006 Size dependence of optical properties and internal structure of plasma grown carbonaceous nanoparticles studied by in situ Rayleigh–Mie scattering ellipsometry. J. Appl. Phys. 100 (6), 064303.Google Scholar
Jäger, C., Il’in, V. B., Henning, T., Mutschke, H., Fabian, D., Semenov, A. D. & Voshchinnikov, V. N. 2003 A database of optical constants of cosmic dust analogs. J. Quant. Spectrosc. Radiat. Transfer 79–80, 765774.CrossRefGoogle Scholar
Jullien, R. & Botet, R. 1987 Aggregation and Fractal Aggregates. World Scientific.Google Scholar
Kaye, B. H. 1994 A Random Walk Through Fractal Dimensions. Weinheim.CrossRefGoogle Scholar
King, M. D., Byrne, D. M., Herman, B. M. & Reagan, J. A. 1978 Aerosol size distributions obtained by inversions of spectral optical depth measurements. J. Atmos. Sci. 35 (11), 21532167.Google Scholar
Kishor Kumar, K., Couëdel, L. & Arnas, C. 2013 Growth of tungsten nanoparticles in direct-current argon glow discharges. Phys. Plasmas 20 (4), 043707.Google Scholar
Ku, J. C. & Felske, J. D. 1986 Determination of refractive indices of mie scatterers from Kramers–Kronig analysis of spectral extinction data. J. Opt. Soc. Am. A 3 (5), 617623.Google Scholar
Mackowski, D. W. & Mishchenko, M. I. 1996 Calculation of the T matrix and the scattering matrix for ensembles of spheres. J. Opt. Soc. Am. A 13 (11), 22662278.Google Scholar
Mankelevich, Yu., Olevanov, M., Pal’, A., Rakhimova, T., Ryabinkin, A., Serov, A. & Filippov, A. 2009 Coagulation of dust grains in the plasma of an rf discharge in argon. Plasma Phys. Rep. 35, 191199.CrossRefGoogle Scholar
Mankelevich, Yu. A., Olevanov, M. A. & Rakhimova, T. V. 2008 Dust particle coagulation mechanism in low-pressure plasma: rapid growth and saturation stage modeling. Plasma Sources Sci. Technol. 17 (1), 015013.Google Scholar
Meakin, P. 1983 Formation of fractal clusters and networks by irrevesible diffusion-limited aggregation. Phys. Rev. Lett. 51 (13), 11191122.Google Scholar
Mishchenko, M. I. & Travis, L. D.2010 Electromagnetic scattering by particles and surfaces (NASA GISS) http://www.giss.nasa.gov/staff/mmishchenko/.Google Scholar
Mishchenko, M. I., Dlugach, Z. M. & Zakharova, N. T. 2014 Direct demonstration of the concept of unrestricted effective-medium approximation. Opt. Lett. 39 (13), 39353938.Google Scholar
Mishchenko, M. I., Hovenier, J. W. & Travis, L. D. 2000 Light Scattering by Non Spherical Particles: Theory, Measurements and Applications. Academic.Google Scholar
Mishchenko, M. I. & Martin, P. A. 2013 Peter Waterman and T-Matrix methods. J. Quant. Spectrosc. Radiat. Transfer 123, 27.CrossRefGoogle Scholar
Mitic, S., Pustylnik, M. Y., Morfill, G. E. & Kovačević, E. 2011 In situ characterization of nanoparticles during growth by means of white light scattering. Opt. Lett. 36 (18), 36993701.Google Scholar
Mroczka, J., Wozniak, M. & Onofri, F. R. A. 2012 Algorithms and methods for the analysis of the optical structure factor of fractal aggregates. Metrology Meas. Syst. XIX (3), 459470.Google Scholar
Muinonen, K., Nousiainen, T., Fast, P., Lumme, K. & Peltoniemi, J. I. 1996 Light scattering by gaussian random particles: ray optics approximation. J. Quant. Spectrosc. Radiat. Transfer 55 (5), 577601.Google Scholar
Onofri, F. & Barbosa, S. 2012a Basics on light scattering properties of small particles. In Laser Metrology in Fluid Mechanics (ed. Boutier, A.). Wiley.Google Scholar
Onofri, F. & Barbosa, S. 2012b Optical particle characterization. In Laser Metrology in Fluid Mechanics (ed. Boutier, A.). Wiley.Google Scholar
Onofri, F., Gréhan, G. & Gouesbet, G. 1995 Electromagnetic scattering from a multilayered sphere located in an arbitrary beam. Appl. Opt. 34 (30), 71137124.Google Scholar
Onofri, F., Ren, K. F. & Grisolia, C. 2009 Development of an in situ ITER dust diagnostic based on extinction spectrometry: dedicated light scattering models. J. Nucl. Mater. 390–391, 10931096.Google Scholar
Onofri, F. R. A., Barbosa, S., Touré, O., Woźniak, M. & Grisolia, C. 2013 Sizing highly-ordered buckyball-shaped aggregates of colloidal nanoparticles by light extinction spectroscopy. J. Quant. Spectrosc. Radiat. Transfer 126, 160168.Google Scholar
Onofri, F. R. A., Barbosa, S., Wozniak, M., Vrel, D. & Grisolia, C. 2012 In situ characterization of dust mobilized by laser cleaning methods and loss of vacuum accident. Fusion Sci. Technol. 62 (1), 3945.Google Scholar
Onofri, F. R. A., Pelce, C., Meister, L., Montet, C., Pelce, P., Barbosa, S., Sentis, M. & Bizi, M. 2014 On the size and morphological characterization of needle-shaped $\text{TiO}_{2}$ nanoparticles in suspension. Proc. SPIE 9232, 16.Google Scholar
Onofri, F. R. A., Wozniak, M. & Barbosa, S. 2011 On the optical characterisation of nanoparticle and their aggregates in plasma systems. Contrib. Plasma Phys. 51 (2–3), 228236.Google Scholar
Palik, E. D. 1997 Handbook of Optical Constants of Solids. Academic.Google Scholar
Phillips, D. L. 1962 A technique for the numerical solution of certain integral equations of the first kind. J. ACM 9 (1), 8497.Google Scholar
POV-Ray 2010 The Persistence of Vision Raytracer Pty. Ltd. http://www.povray.org/.Google Scholar
Rosanvallon, S., Grisolia, C., Counsell, G., Hong, S. H., Onofri, F., Worms, J., Winter, J., Annaratone, B. M., Maddaluno, G. & Gasior, P. 2008 Dust control in tokamak environment. Fusion Engng Des. 83, 17011705.CrossRefGoogle Scholar
Rosanvallon, S., Grisolia, C., Delaporte, P., Worms, J., Onofri, F., Hong, S. H., Counsell, G. & Winter, J. 2009 Dust in ITER: diagnostics and removal techniques. J. Nucl. Mater. 386–388, 882883.CrossRefGoogle Scholar
Samsonov, D. & Goree, J. 1999a Instabilities in a dusty plasma with ion drag and ionization. Phys. Rev. E 59 (1), 10471058.Google Scholar
Samsonov, D. & Goree, J. 1999b Particle growth in a sputering discharge. J. Vac. Sci. Technol. A 17 (5), 28352840.Google Scholar
Sebastian, G., Franko, G., Benjamin, T. & Alexander, P. 2015 Kinetic mie ellipsometry to determine the time-resolved particle growth in nanodusty plasmas. J. Phys. D: Appl. Phys. 48 (46), 465203.Google Scholar
Sentis, M., Onofri, F. R. A., Dhez, O., Laurent, J.-Y. & Chauchard, F. 2015 Organic photo sensors for multi-angle light scattering characterization of particle systems. Opt. Exp. 23 (12), 2753627541.Google Scholar
Sharpe, J. P., Petti, D. A. & Bartels, H. W. 2002 A review of dust in fusion devices: implications for safety and operational performance. Fusion Engng Des. 63–64, 153163.CrossRefGoogle Scholar
SOPRA 2008 Software Spectra, Optical Database from SOPRA SA.http://www.sspectra.com/sopra.html.Google Scholar
Sorensen, C. M. 2001 Light scattering by fractal aggregates: a review. Aerosol Sci. Technol. 35 (2), 648687.CrossRefGoogle Scholar
Tamanai, A., Mutschke, H., Blum, J. & Neuha, R. 2006 Experimental infrared spectroscopic measurement of light extinction for agglomerate dust grains. J. Quant. Spectrosc. Radiat. Transfer 100, 373381.Google Scholar
Theiler, J. 1990 Estimating fractal dimension. J. Opt. Soc. Am. A 7 (6), 10551073.Google Scholar
Tikhonov, A. N., Goncharsky, A., Stepanov, V. V. & Yagola, A. G. 1995 Numerical Methods for the Solution of Ill-Posed Problems: Mathematics and Its Applications, vol. 328. Springer.Google Scholar
Twomey, S. 1963 On the numerical solution of fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature. J. ACM 10 (1), 97101.Google Scholar
Twomey, S. 1979 Introduction to the Mathematics in Remote Sensing and Indirect Measurement. Elsevier.Google Scholar
Waterman, P. C. 1965 Matrix formulation of electromagnetic scattering. Proc. IEEE 53 (8), 805812.Google Scholar
Wattieaux, G., Mezeghrane, A. & Boufendi, L. 2011 Electrical time resolved metrology of dust particles growing in low pressure cold plasmas. Phys. Plasmas 18 (9), 093701.Google Scholar
Widmann, J. F., Duchez, J., Yang, J. C., Conny, J. M. & Mulholland, G. W. 2005 Measurement of the optical extinction coefficient of combustion-generated aerosol. J. Aero. Sci. 36 (2), 283289.Google Scholar
Witten, T. A. & Sander, L. M. 1981 Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47 (19), 14001403.Google Scholar
Wozniak, M.2012 Characterization of nanoparticle aggregates with light scattering techniques. PhD thesis, Aix-Marseille University, Marseille.Google Scholar
Wozniak, M. & Onofri, F. R. A.2012 Modelling the morphology and tem images of fractal aggregates of spherical particles (dla 1.13), http://iusti.univ-provence.fr/document.php?pagendx=12782&project=iusti.Google Scholar
Wozniak, M., Onofri, F. R. A., Barbosa, S., Yon, J. & Mroczka, J. 2012 Comparison of methods to derive morphological parameters of multi-fractal samples of particle aggregates from tem images. J. Aero. Sci. 47, 1226.Google Scholar
Wriedt, T. 1998 A review of elastic light scattering theories. Part. Part. Syst. Charact. 15 (2), 6774.Google Scholar
Wriedt, T. 2007 Review of the null-field method with discrete sources. J. Quant. Spectrosc. Radiat. Transfer 106, 535.Google Scholar
Wriedt, T.2010 Light Scattering Programs (SCATTPORT).http://www.scattport.org/index.php/light-scattering-software.Google Scholar
Wyatt, P. J., Schehrer, K. L., Phillips, S. D., Jackson, C., Chang, Y. J., Parker, R. G., Phillips, D. T. & Bottiger, J. R. 1988 Aerosol particle analyzer. Appl. Opt. 27 (2), 217221.CrossRefGoogle ScholarPubMed
Xu, R. 2001 Particle Characterization: Light Scattering Methods. Kluwer.Google Scholar
Yan, B., Zhang, H. & Liu, C. 2012 Scattering of on-axis gaussian beam by a chiral spheroid. J. Opt. Soc. Am. A 29 (11), 23812385.Google Scholar
Yurkin, M. A. & Kahnert, M. 2013 Light scattering by a cube: accuracy limits of the discrete dipole approximation and the t-matrix method. J. Quant. Spectrosc. Radiat. Transfer 123, 176183.CrossRefGoogle Scholar