Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T01:41:42.315Z Has data issue: false hasContentIssue false

An energy and momentum conserving collisional bracket for the guiding-centre Vlasov–Maxwell–Landau model

Published online by Cambridge University Press:  14 July 2021

Riccardo N. Iorio*
Affiliation:
Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
Eero Hirvijoki
Affiliation:
Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
*
Email address for correspondence: [email protected]

Abstract

This paper proposes a metric bracket for representing Coulomb collisions in the so-called guiding-centre Vlasov–Maxwell–Landau model. The bracket is manufactured to preserve the same energy and momentum functionals as does the Vlasov–Maxwell part and to simultaneously satisfy a revised version of the H-theorem, where the equilibrium distributions with respect to collisional dynamics are identified as Maxwellians. This is achieved by exploiting the special projective nature of the Landau collision operator and the simple form of the system's momentum functional. A discussion regarding a possible extension of the results to electromagnetic drift-kinetic and gyrokinetic systems is included. We anticipate that energy conservation and entropy dissipation can always be manufactured whereas guaranteeing momentum conservation is a delicate matter yet to be resolved.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bobylev, A.V. & Nanbu, K. 2000 Theory of collision algorithms for gases and plasmas based on the boltzmann equation and the Landau-Fokker-Planck equation. Phys. Rev. E 61 (4), 4576.CrossRefGoogle ScholarPubMed
Brizard, A.J. 2000 Variational principle for nonlinear gyrokinetic Vlasov–Maxwell equations. Phys. Plasmas 7 (12), 48164822.CrossRefGoogle Scholar
Brizard, A.J. 2004 A guiding-center Fokker–Planck collision operator for nonuniform magnetic fields. Phys. Plasmas 11 (9), 44294438.CrossRefGoogle Scholar
Brizard, A.J. & Chandre, C. 2020 Hamiltonian formulations for perturbed dissipationless plasma equations. Phys. Plasmas 27 (12), 122111.CrossRefGoogle Scholar
Brizard, A.J., Morrison, P.J., Burby, J.W., de Guillebon, L. & Vittot, M. 2016 Lifting of the Vlasov–Maxwell bracket by lie-transform method. J. Plasma Phys. 82 (6).CrossRefGoogle Scholar
Brizard, A.J. & Tronci, C. 2016 Variational formulations of guiding-center Vlasov–Maxwell theory. Phys. Plasmas 23 (6), 062107.CrossRefGoogle Scholar
Burby, J.W. & Brizard, A.J. 2019 Gauge-free electromagnetic gyrokinetic theory. Phys. Lett. A 383 (18), 21722175.CrossRefGoogle Scholar
Burby, J.W., Brizard, A.J., Morrison, P.J. & Qin, H. 2015 a Hamiltonian gyrokinetic Vlasov–Maxwell system. Phys. Lett. A 379 (36), 20732077.CrossRefGoogle Scholar
Burby, J.W., Brizard, A.J. & Qin, H. 2015 b Energetically consistent collisional gyrokinetics. Phys. Plasmas 22 (10), 100707.CrossRefGoogle Scholar
Cary, J.R. & Kaufman, A.N. 1981 Ponderomotive effects in collisionless plasma: a lie transform approach. Phys. Fluids 24 (7), 12381250.CrossRefGoogle Scholar
Coquinot, B. & Morrison, P.J. 2020 A general metriplectic framework with application to dissipative extended magnetohydrodynamics. J. Plasma Phys. 86 (3).CrossRefGoogle Scholar
Grebogi, C., Kaufman, A.N. & Littlejohn, R.G. 1979 Hamiltonian theory of ponderomotive effects of an electromagnetic wave in a nonuniform magnetic field. Phys. Rev. Lett. 43 (22), 1668.CrossRefGoogle Scholar
Grmela, M. 1984 a Bracket formulation of dissipative fluid mechanics equations. Phys. Lett. A 102 (8), 355358.CrossRefGoogle Scholar
Grmela, M. 1984 b Particle and bracket formulations of kinetic equations. In Fluids and Plasmas: Geometry and Dynamics, Contemporary Mathematics, pp. 125–132. American Mathematical Society.CrossRefGoogle Scholar
Grmela, M. 1985 Bracket formulation of dissipative time evolution equations. Phys. Lett. A 111 (1-2), 3640.CrossRefGoogle Scholar
Hahm, T.S., Lee, W.W. & Brizard, A. 1988 Nonlinear gyrokinetic theory for finite-beta plasmas. Phys. Fluids 31 (7), 19401948.CrossRefGoogle Scholar
Hatori, T. & Washimi, H. 1981 Covariant form of the ponderomotive potentials in a magnetized plasma. Phys. Rev. Lett. 46 (4), 240.CrossRefGoogle Scholar
Hirvijoki, E. 2021 Structure-preserving marker-particle discretizations of coulomb collisions for particle-in-cell codes. Plasma Phys. Control. Fusion 63 (4), 044003.CrossRefGoogle Scholar
Hirvijoki, E., Brizard, A., Snicker, A. & Kurki-Suonio, T. 2013 Monte Carlo implementation of a guiding-center Fokker-Planck kinetic equation. Phys. Plasmas 20 (9), 092505.CrossRefGoogle Scholar
Hirvijoki, E. & Burby, J.W. 2020 Collisional gyrokinetics teases the existence of metriplectic reduction. Phys. Plasmas 27 (8), 082307.CrossRefGoogle Scholar
Hirvijoki, E., Burby, J.W., Pfefferlé, D. & Brizard, A.J. 2020 Energy and momentum conservation in the Euler–Poincaré formulation of local Vlasov–Maxwell-type systems. J. Phys. A: Math. Theor. 53 (23), 235204.CrossRefGoogle Scholar
Holm, D.D., Marsden, J.E., Ratiu, T. & Weinstein, A. 1985 Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 123 (1-2), 1116.CrossRefGoogle Scholar
Kaufman, A.N. 1984 Dissipative Hamiltonian systems: a unifying principle. Phys. Lett. A 100 (8), 419422.CrossRefGoogle Scholar
Kaufman, A.N. & Holm, D.D. 1984 The lie-transformed vlasov action principle: relativistically covariant wave propagation and self-consistent ponderomotive effects. Phys. Lett. A 105 (6), 277279.CrossRefGoogle Scholar
Kaufman, A.N. & Morrison, P.J. 1982 Algebraic structure of the plasma quasilinear equations. Phys. Lett. A 88 (8), 405406.CrossRefGoogle Scholar
Kraus, M. & Hirvijoki, E. 2017 Metriplectic integrators for the landau collision operator. Phys. Plasmas 24 (10), 102311.CrossRefGoogle Scholar
Lingam, M. 2015 Dissipative effects in magnetohydrodynamical models with intrinsic magnetization. Commun. Nonlinear Sci. Numer. Simul. 28 (1-3), 223231.CrossRefGoogle Scholar
Littlejohn, R.G. 1981 Hamiltonian formulation of guiding center motion. Phys. Fluids 24, 1730.CrossRefGoogle Scholar
Littlejohn, R.G. 1982 Hamiltonian perturbation theory in noncanonical coordinates. J. Math. Phys. 23, 742.CrossRefGoogle Scholar
Littlejohn, R.G. 1983 Variational principles of guiding centre motion. J. Plasma Phys. 29 (1), 111125.CrossRefGoogle Scholar
Littlejohn, R.G. 1984 Geometry and guiding center motion. In Fluids and Plasmas: Geometry and Dynamics (ed. J. E. Marsden), Contemporary Mathematics, vol. 28, pp. 151–167. American Mathematical Society.CrossRefGoogle Scholar
Marsden, J.E. & Weinstein, A. 1982 The Hamiltonian structure of the Maxwell-Vlasov equations. Phys. D Nonlinear Phenom. 4 (3), 394406.CrossRefGoogle Scholar
Materassi, M. & Tassi, E. 2012 Metriplectic framework for dissipative magneto-hydrodynamics. Phys. D: Nonlinear Phenom. 241 (6), 729734.CrossRefGoogle Scholar
Morrison, P.J. 1980 The Maxwell-Vlasov equations as a continuous Hamiltonian system. Phys. Lett. A 80 (5–6), 383386.CrossRefGoogle Scholar
Morrison, P.J. 1984 a Bracket formulation for irreversible classical fields. Phys. Lett. A 100 (8), 423427.CrossRefGoogle Scholar
Morrison, P.J. 1984 b Some observations regarding brackets and dissipation. Tech. Rep.. Center for Pure and Applied Mathematics Report PAM–228, University of California, Berkeley.Google Scholar
Morrison, P.J. 1986 A paradigm for joined Hamiltonian and dissipative systems. Phys. D: Nonlinear Phenom. 18, 410419.CrossRefGoogle Scholar
Morrison, P.J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70 (2), 467.CrossRefGoogle Scholar
Morrison, P.J. 2009 On Hamiltonian and action principle formulations of plasma dynamics. In AIP Conference Proceedings, vol. 1188, pp. 329–344. American Institute of Physics.CrossRefGoogle Scholar
Morrison, P.J. & Greene, J.M. 1980 Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics. Phys. Rev. Lett. 45 (10), 790.CrossRefGoogle Scholar
Sugama, H. 2000 Gyrokinetic field theory. Phys. Plasmas 7 (2), 466480.CrossRefGoogle Scholar
Weinstein, A. & Morrison, P.J. 1981 Comments on: the Maxwell-Vlasov equations as a continuous Hamiltonian system. Phys. Lett. A 86 (4), 235236.CrossRefGoogle Scholar
Yoon, E.S. & Chang, C.S. 2014 A Fokker-Planck-Landau collision equation solver on two-dimensional velocity grid and its application to particle-in-cell simulation. Phys. Plasmas 21 (3), 032503.CrossRefGoogle Scholar