Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T12:23:43.782Z Has data issue: false hasContentIssue false

An average Lagrangian formulation of ponderomotive forces in Vlasov plasmas

Published online by Cambridge University Press:  13 March 2009

G. W. Kentwell
Affiliation:
Department of Theoretical Physics, Research School of Physical Sciences, Australian National University, Canberra, ACT 2601, Australia

Abstract

Whitham's averaged Lagrangian principle, and the Low Lagrangian are used to derive the averaged Lagrangian for slowly varying electrostatic and electromagnetic wave packets in dispersive Vlasov plasmas. From the averaged Lagrangian, the stress tensor and wave-momentum densities are derived for the total wave-particle system. For a specific division of these total quantities into wave and background parts, time-dependent ponderomotive forces in Vlasov plasmas are derived from a momentum conservation theorem. We also show that the wave-induced magnetization current can be derived by the averaged Lagrangian method.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akama, H. A. & Nambu, M. 1981 Phys. Lett. 84A, 68.CrossRefGoogle Scholar
Barash, Yu. S. & Karpman, V. I. 1984 Soviet Phys. JETP, 58, 1139.Google Scholar
Cary, J. R. & Kaufman, A. N. 1981 Phys. Fluids, 24, 1238.CrossRefGoogle Scholar
Dewar, R. L. 1970 a Ph.D. Thesis, Princeton.Google Scholar
Dewar, R. L. 1970 b Phys. Fluids, 13, 2710.CrossRefGoogle Scholar
Dewar, R. L. 1971 J. Plasma Phys. 7, 267.CrossRefGoogle Scholar
Dewar, R. L. 1973 Phys. Fluids, 16, 1102.CrossRefGoogle Scholar
Dewar, R. L. 1976 J. Phys. A, 9, 2043.Google Scholar
Dewar, R. L. 1977 Aust. J. Phys. 35, 533.CrossRefGoogle Scholar
Dysthe, K. B. 1974 J. Plasma Phys. 11, 63.CrossRefGoogle Scholar
Galloway, J. J. & Kim, H. 1971 J. Plasma Phys. 6, 63.CrossRefGoogle Scholar
Gilbert, A. D. 1974 Proc. Camb. Phil. Soc. 76, 327.CrossRefGoogle Scholar
Heintzmann, H. & Schbüfer, E. 1982 Soviet Phys. JEPT, 54, 680.Google Scholar
Heintzmann, H. & Novello, M. 1983 Phys. Rev. A, 27, 2671.CrossRefGoogle Scholar
Jones, D. A. & Kentwell, G. W. 1984 Plasma Phys. Contr. Fusion 26, 955.CrossRefGoogle Scholar
Kaufman, A. N. 1982 Physica Scripta, T2, 517.CrossRefGoogle Scholar
Kentwell, G. W. & Jones, D. A. 1985 J. Plasma Phys. 33, 43.CrossRefGoogle Scholar
Kentwell, G. W. 1985 Plasma Phys. Contr. Fusion. (In press.)Google Scholar
Kim, H. & Crawfobd, F. W. 1977 Radio Sci. 12, 941, 953, 965.CrossRefGoogle Scholar
Klíma, R. & Petržílka, V. A. 1978 J. Phys. A, 11, 1687.Google Scholar
Low, F. E. 1958 Proc. Roy. Soc. A248, 282.Google Scholar
Morrison, P. J. 1981 AIP Conf. Proc. 88, 13.Google Scholar
Pitaevskii, L. P. 1961 Soviet Phys. JETP, 12, 1008.Google Scholar
Statham, G. & ter Haar, D. 1983 Plasma Phys. 25, 681.CrossRefGoogle Scholar
Sturrock, P. A. 1958 Ann. Phys. NY, 4, 306.CrossRefGoogle Scholar
Vedenov, A. A. & Rudakov, L. I. 1965 Soviet Phys. Doklady, 9, 1073.Google Scholar
Whitham, G. B. 1965 J. Fluid Mech. 22, 273.CrossRefGoogle Scholar
Whitham, G. B. 1970 J. Fluid Mech. 44, 373.CrossRefGoogle Scholar