Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T06:56:14.538Z Has data issue: false hasContentIssue false

An analytic model of plasma-neutral coupling in the heliosphere plasma

Published online by Cambridge University Press:  30 June 2010

DASTGEER SHAIKH
Affiliation:
Department of Physics, University of Alabama at Huntsville, Huntsville, AL 35805, USA ([email protected]) Center for Space Physics and Aeronomic Research (CSPAR), University of Alabama at Huntsville, Huntsville, AL 35805, USA
B. DASGUPTA
Affiliation:
Center for Space Physics and Aeronomic Research (CSPAR), University of Alabama at Huntsville, Huntsville, AL 35805, USA

Abstract

We have developed an analytic model to describe coupling of plasma and neutral fluids in the partially ionized heliosphere plasma medium. The sources employed in our analytic model are based on a κ-distribution as opposed to the Maxwellian distribution function. Our model uses the κ-distribution to analytically model the energetic neutral atoms that result in the heliosphere partially ionized plasma from charge exchange with the protons and subsequently produce a long tail, which is otherwise not describable by the Maxwellian distribution. We present our analytic formulation and describe major differences in the sources emerging from these two distinct distributions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burlaga, L. F., Ness, N. F., Acuna, M. H., Richardson, J. D., Stone, E. and McDonald, F. B. 2009 Astrophys. J. 692, 11251130.Google Scholar
Burlaga, L. F. and Ness, N. F. 2009 Astrophys. J. 703, 311.CrossRefGoogle Scholar
Burlaga, L. F., Ness, N. F., Acuña, M. H., Lepping, R. P., Connerney, J. E. P. and Richardson, J. D. 2008 Nature 454, 75.CrossRefGoogle Scholar
Burlaga, L. F., Ness, N. F. and Acuña, M. H. 2006 Astrophys. J. 642, 584.Google Scholar
Decker, R. B., Krimigis, S. M., Roelof, E. C., Hill, M. E., Armstrong, T. P., Gloeckler, G., Hamilton, D. C. and Lanzerotti, L. J. 2005 Science 309, 20202024.Google Scholar
Fite, W. L., Smith, A. C. H. and Stebbings, R. F. 1962 Proc. R. Soc. Lond., Em. A. 268, 527.Google Scholar
Goldstein, M. L., Roberts, D. A. and Matthaeus, W. H. 1995 Ann. Rev. Astron. Astrophys. 33, 283.Google Scholar
Heerikhuisen, J., Pogorelov, N. V., Florinski, V., Zank, G. P. and leRoux, J. A. 2008 Astrophys. J. 682, 679.Google Scholar
Heerikhuisen, J., Shaikh, D. and Zank, G. 2007 AIP Conf. Proc. 932, 123.Google Scholar
Mendonca, J. T. and Shukla, P. K. 2007 Phys. Plasma 14 (12), 122304122344.Google Scholar
Pauls, H. L., Zank, G. P. and Williams, L. L. 1995 J. Geophys. Res. A11, 21595.Google Scholar
Prested, C., Schwadron, N., Passuite, J., Randol, B., Stuart, B., Crew, G., Heerikhuisen, J., Pogorelov, N., Zank, G., Opher, M., et al. 2008 J. Geophys. Res. 113 (A6), Cited ID A06102.Google Scholar
Richardson, J. D. 2008 Plasma Near Termination Shock Heliosheath. Danvers, MA: AIPC, p. 1039, 418; Li, H., Wang, C. and Richardson, J. D. 2008 Geophys. Res. Lett. 3519107.Google Scholar
Shaikh, D. and Zank, G. P. 2010 AIP Conf. Proc. 1216, 164167.CrossRefGoogle Scholar
Shaikh, D. In press J. Plasma Phys., 2009 arXiv0912.1568S.Google Scholar
Shaikh, D., Zank, G. P. and Pogorelov, N. 2006 AIP Conf. Proc. 858, 308313.Google Scholar
Shaikh, D. and Zank, G. P. 2008 Astrophys. J. 688 (1), 683694.Google Scholar
Shukla, P. K. 1978 Nature 274, 874.Google Scholar
Stone, E. C., Cummings, A. C., McDonald, F. B., Heikkila, B. C., Lal, N. and Webber, W. R. 2005 Science 309, 20172020.Google Scholar
Zank, G. P. 1999 Space Sci. Rev. 89, 413688.CrossRefGoogle Scholar