Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T01:06:34.284Z Has data issue: false hasContentIssue false

Alfvén wave heating of a cylindrical plasma using axisymmetric waves. Part 2. Kinetic theory

Published online by Cambridge University Press:  13 March 2009

I. J. Donnelly
Affiliation:
Australian Atomic Energy Commission Research Establishment, Private Mail Bag, Sutherland, N.S.W. 2232, Australia
B. E. Clancy
Affiliation:
Australian Atomic Energy Commission Research Establishment, Private Mail Bag, Sutherland, N.S.W. 2232, Australia
N. F. Cramer
Affiliation:
School of Physics, University of Sydney, Sydney, N.S.W. 2006, Australia

Abstract

Kinetic theory, including ion Larmor radius effects, is used to analyse the Alfvén wave heating of cylindrical plasmas using axisymmetric waves excited by an antenna at frequencies up to the ion cyclotron frequency. At the Alfvén resonance position, the compressional wave is mode converted to a quasi-electrostatic wave (QEW) which propagates towards the plasma centre or edge depending on whether the plasma is hot or warm. The energy absorbed by the plasma agrees with the MHD theory predictions provided the QEW is heavily damped before reaching the plasma centre or edge; if it is not, then QEW resonances may occur with a consequent increase in antenna resistance. The relation between ion cyclotron wave resonances and QEW resonances in a hot plasma is shown. The behaviour described above is demonstrated by numerical solution of the wave equations for small and large tokamak-like plasmas. WKB theory has been used to derive useful expressions which quantify the QEW behaviour.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allis, W. P., Buchsbaum, S. J. & Bers, A. 1963 Waves in Anisotropic Plasmas, MIT Press.Google Scholar
Appert, K., Collins, G. A., Hofmann, F., Keller, R., Lietti, A., Lister, J. B., Pochelon, A. & Villard, L. 1985 Phys. Rev. Lett. 54, 1671.CrossRefGoogle Scholar
Bengtson, R. D.et al. 1984 Proceedings of 4th International Symposium on Heating in Toroidal Plasmas, Rome, p. 121.Google Scholar
Burdo, O. S., Gorin, V. V., Dmitrenko, A. G. & Elfimov, A. G. 1983 Soviet J. Plasma Phys. 9, 403.Google Scholar
Choe, J., Tataronis, J. A. & Grossmann, W. 1977 Plasma Phys. 19, 117.CrossRefGoogle Scholar
Clancy, B. E. & Donnelly, I. J. 1986 Comput. Phys. Commum. (To be published.)Google Scholar
Colestock, P. L. & Kashuba, R. J. 1983 Nucl. Fusion, 23, 763.CrossRefGoogle Scholar
Collins, G. A., Cramer, N. F. & Donnelly, I. J. 1984 Plasma Phys. Contr. Fusion, 26, 273.CrossRefGoogle Scholar
Cross, R. C., Blackwell, B. D., Brennan, M. H., Borg, G. & Lehane, J. A. 1982 Proceedings of 3rd International Symposium on Heating in Toroidal Plasmas, Grenoble, p. 177.Google Scholar
De Chambrier, A. et al. 1984 Proceedings of 4th International Symposium on Heating in Toroidal Plasmas, Rome, p. 137.Google Scholar
Donnelly, I. J. & Clancy, B. E. 1983 Aust. J. Phys. 36, 305.CrossRefGoogle Scholar
Donnelly, I. J., Clancy, B. E. & Cramer, N. F. 1984 Proceedings 6th International Conference on Plasma Physics, Lausanne, Contributed Papers, p. 228.Google Scholar
Donnelly, I. J., Clancy, B. E. & Cramer, N. F. 1985 J. Plasma Phys. 34, 227.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Ginzburg, V. L. 1964 The Propagation of Electro-Magnetic Waves in Plasmas. Pergamon.Google Scholar
Grekov, D. L., Stepanov, K. N. & Tataronis, J. A. 1981 Soviet J. Plasma Phys. 7, 411.Google Scholar
Hasegawa, A. & Chen, L. 1976 Phys. Fluids, 19, 1924.CrossRefGoogle Scholar
Itoh, K. & Itoh, S.-I. 1983 Plasma Phys. 25, 1037.CrossRefGoogle Scholar
Kappraff, J. M. & Tataronis, J. A. 1977 J. Plasma Phys. 18, 209.CrossRefGoogle Scholar
Kieras, C. E. & Tataronis, J. A. 1982 J. Plasma Phys. 28, 395.CrossRefGoogle Scholar
Mahajan, S. M. 1984 Phys. Fluids, 27, 2238.CrossRefGoogle Scholar
Perkins, F. W. 1977 Nucl. Fusion 17, 1197.CrossRefGoogle Scholar
Puri, S. 1980 Proceedings of 8th International Conference on Plasma Physics and Controlled Fusion, Brussels, vol. 2, p. 51.Google Scholar
Ross, D. W., Chen, G. L. & Mahajan, S. M. 1982 Phys. Fluids, 25, 652.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Stix, T. H. 1975 Nucl. Fusion, 15, 737.CrossRefGoogle Scholar
Stix, T. H. 1980 Proceedings of 2nd International Symposium on Heating in Toroidal Plasmas, Como, p. 631.Google Scholar
Stix, T. H. & Swanson, D. G. 1984 Handbook of Plasma Physics, vol. 1 (ed. Galeev, A. and Sudan, R. N.). North Holland.Google Scholar
Swanson, D. G. 1975 Phys. Fluids, 18, 1269.CrossRefGoogle Scholar
Tfr Group 1982 Nucl. Fusion, 22, 1577.CrossRefGoogle Scholar
Tsushima, A., Amagishi, Y. & Inutake, M. 1982 Phys. Lett. A 88, 457.CrossRefGoogle Scholar
Winglee, R. M. 1984 Plasma Phys Contr. Fusion, 26, 511.CrossRefGoogle Scholar
Witherspoon, F. D., Prager, S. C. & Sprott, J. C. 1984 Phys. Rev. Lett. 53, 1559.CrossRefGoogle Scholar