Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T00:22:16.004Z Has data issue: false hasContentIssue false

Alfvdén wave heating of a cylindrical plasma using axisymmetric waves. Part 1. MHD theory

Published online by Cambridge University Press:  13 March 2009

I. J. Donnelly
Affiliation:
Australian Atomic Energy Commission Research Establishment, Private Mail Bag, Sutherland, N.S.W. 2232, Australia
B. E. Clancy
Affiliation:
Australian Atomic Energy Commission Research Establishment, Private Mail Bag, Sutherland, N.S.W. 2232, Australia
N. F. Cramer
Affiliation:
School of Physics, University of Sydney, Sydney, N.S.W. 2006, Australia

Abstract

MHD theory with the Hall term has been used to analyse the Alfvén resonance heating of cylindrical plasmas using axisymmetric waves excited by an antenna. An analytic expression for the antenna impedance has been derived for a simple plasma model and this is used to help interpret the computational results for small, medium and large plasmas. Compressional wave eigenmodes give large antenna resistances; however, the energy is deposited near the plasma surface. At a frequency just above each eigenfrequency, the Alfvén resonance damping is zero. Below the first eigenfrequency, the energy can be deposited near the plasma centre; however, the antenna resistance is fairly low except for medium size plasmas with a nearly constant central density. Ion cyclotron wave resonances are briefly discussed. Some general concepts relevant to the penetration of wave energy into large plasmas are presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.Google Scholar
Appert, K., Balet, B., Gruber, R., Troyon, F., Tsunematsu, T. & Václavík, J. 1980 Proceedings of 2nd Joint Varenna-Grenoble International Symposium on Heating in Toroidal Plasmas, Como, p. 643.Google Scholar
Appert, K., Gruber, R., Troyon, F. & Václavík, J. 1982 Plasma Phys. 24, 1147.CrossRefGoogle Scholar
Appert, K. & Václavík, J. 1983 Plasma Phys. 25, 551.CrossRefGoogle Scholar
Appert, K., Václavík, J. & Villard, L. 1984 Phys. Fluids, 27, 432.CrossRefGoogle Scholar
Balet, B., Appert, K. & Václavík, J. 1982 Plasma Phys. 24, 1005.CrossRefGoogle Scholar
Bernstein, I. B. & Trehan, S. K. 1960 Nucl. Fusion, 1, 3.CrossRefGoogle Scholar
Brennan, M. H., Cross, R. C., Jessup, B. L., Lehane, J. A. & Murphy, A. B. 1983 Bull. Am. Phys. Soc. 28, 1085.Google Scholar
De Chambrier, A., Cheetham, A. D., Heym, A., Hofmann, F., Joye, B., Keller, R., Lietti, A., Lister, J. B. & Pochklon, A. 1982 Plasma Phys. 24, 893.CrossRefGoogle Scholar
De Chambrier, A., Heym, A., Hofmann, F., Joye, B., Keller, R., Lietti, A., Lister, J. B., Morgan, P. D., Peacock, N. J., Pochelon, A. & Stamp, M. F. 1983 Plasma Phys. 25, 1021.CrossRefGoogle Scholar
Clancy, B. E. & Donnelly, I. J. 1984 AAEC/E Report. (To be published.)Google Scholar
Cramer, N. F. & Donnelly, I. J. 1983 Plasma Phys. 25, 703.CrossRefGoogle Scholar
Cross, R. C., Blackwell, B. D., Brennan, M. H., Borg, G. & Lehane, J. A. 1982 Proceedings of 3rd Joint Varenna-Grenoble International Symposium on Heating in Toroidal Plasmas, Grenoble, p. 177.Google Scholar
Donnelly, I. J. & Cramer, N. F. 1984 Plasma Phys. Contr. Fusion, 26, 769.CrossRefGoogle Scholar
Ginzburg, V. L. 1964 The Propagation of Electro-magnetic Waves in Plasmas. Pergamon.Google Scholar
Grossmann, W. & Tataronis, J. 1973 Z. Phys. 261, 217.CrossRefGoogle Scholar
Grove, D. et al. 1976 Proceedings of 6th International Conference on Plasma Physics and Controlled Fusion, Berchtesgaden, p. 21. IAEA.Google Scholar
Hasegawa, A. & Chen, L. 1974 Phys. Rev. Lett. 32, 454.CrossRefGoogle Scholar
Hindmarsh, A. C. 1974 GEAR Ordinary Differential Equation Solver, Lawrence Livermore Laboratory Report, UCID-30001.Google Scholar
Karney, C. F. F., Perkins, F. W. & Sun, Y.-C. 1979 Phys. Rev. Lett. 42, 1621.CrossRefGoogle Scholar
Lehane, J. A. & Paoloni, F. J. 1970 Plasma Phys. 12, 823.CrossRefGoogle Scholar
Mahajan, S. M., Ross, D. W. & Chen, G.-L. 1983 Phys. Fluids, 26, 2195.CrossRefGoogle Scholar
Mercier, C., Werkoff, F. & Morera, J. P. 1979 Euratom report EUR-CEA-FC-997.Google Scholar
Messiaen, A. M., Weynants, R. R., Bhatnagar, V. P., Bures, M. & Vandenplas, P. E. 1978 Proceedings of 1st Joint Varenna-Grenoble International Symposium on Heating in Toroidal Plasmas, Grenoble, p. 229.Google Scholar
Ott, E., Websinger, J.-M. & Bonoli, P. T. 1978 Phys. Fluids, 21, 2306.CrossRefGoogle Scholar
Ross, D. W., Chen, G. L. & Mahajan, S. M. 1982 Phys. Fluids, 25, 652.CrossRefGoogle Scholar
Stix, T. H. 1975 Nucl. Fusion, 15, 737.CrossRefGoogle Scholar
Stix, T. H. 1980 Proceedings of 2nd Joint Varenna-Grenoble International Symposium on Heating in Toroidal Plasmas, Como, p. 631.Google Scholar
Tataronis, J. A. 1975 J. Plasma Phys. 13, 87.CrossRefGoogle Scholar
Tataronis, J. A. & Grossmann, W. 1976 Nucl. Fusion 16, 667.CrossRefGoogle Scholar
Tataronis, J. A. & Grossmann, W. 1977 NYU Report COO-3077−102 MF-84.Google Scholar
Whittaker, E. T. & Watson, G. N. 1969 A Course of Modern Analysis. Cambridge University Press.Google Scholar
Winglee, R. M. 1982 Plasma Phys. 24, 1161.CrossRefGoogle Scholar