Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T07:49:32.124Z Has data issue: false hasContentIssue false

Worm tubes in an allochthonous cold-seep carbonate from lower Oligocene rocks of western Washington

Published online by Cambridge University Press:  20 May 2016

James L. Goedert
Affiliation:
1Burke Museum of Natural History and Culture, University of Washington, Seattle, 98195
Jörn Peckmann
Affiliation:
2Institut und Museum für Geologie und Paläontologie, Georg-August-Universität, Goldschmidtstrasse 3, D-37077 Göttingen, Germany
Joachim Reitner
Affiliation:
2Institut und Museum für Geologie und Paläontologie, Georg-August-Universität, Goldschmidtstrasse 3, D-37077 Göttingen, Germany

Abstract

Tubes suspected to be those of vestimentiferan worms are abundant in carbonate boulders at one locality in the lower Oligocene part of the Lincoln Creek Formation along the Canyon River, Grays Harbor County, Washington. The largest tubes exhibit the same general orientation and are arranged in clusters. The tube walls are preserved as aragonite that is, in some cases, replaced by silica. The original tube walls either had a high carbonate content or were indurated very early by aragonite mineralization of the organic wall. The carbonate cements around, on, and inside of the tubes were precipitated due to the microbial oxidation of hydrocarbons at a cold-seep. After lithification, the carbonate fragmented as it slid or slumped, along with other sedimentary debris, downslope into deeper waters. This is one of the few reports of an ancient cold-seep chemosynthetic community dominated by tube worms, and the third report of an allochthonous cold-seep carbonate within a deep-water depositional setting.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

3

Mailing address: P.O. Box 153, Wauna, Washington 98395

References

Armentrout, J. M. 1973. Molluscan paleontology and biostratigraphy of the Lincoln Creek Formation, late Eocene—Oligocene, southwestern Washington. Unpublished Ph.D. dissertation. University of Washington, Seattle, 479 p.Google Scholar
Armentrout, J. M. 1975. Molluscan biostratigraphy of the Lincoln Creek Formation, southwest Washington, p. 1448. In Weaver, D. W. et al., (eds.), Future energy horizons of the Pacific coast—Paleogene symposium and selected technical papers. American Association of Petroleum Geologists, Pacific Section, Society of Economic Paleontologist and Mineralogists, and Society of Exploration Geophysicists, Annual Meeting, Long Beach, California, April 1975.Google Scholar
Arthur, M. A., Kauffman, E. G., Scholle, P. A., and Richardson, R. 1982. Geochemical and paleobiological evidence for the submarine spring origin of carbonate mounds in the Pierre Shale (Cretaceous) of Colorado. Geological Society of America Abstracts with Programs, 14:435.Google Scholar
Baco, A. R., Smith, C. R., and Vrijenhoek, R. C. 1996. Deep-sea whale skeleton communities on the California slope: structure, dynamics, and vent-seep affinities. EOS, 76:OS68.Google Scholar
Banks, D. A. 1985. A fossil hydrothermal worm assemblage from the Tynagh lead-zinc deposit in Ireland. Nature, 313:128131.CrossRefGoogle Scholar
Bartolomaeus, T. 1998. Chaetogenesis in polychaetous Annelida—significance for annelid systematics and the position of the Pogonophora. Zoology, 4:348364.Google Scholar
Berti, M., Cuzzani, M. G., Landuzzi, A., Taviani, M., Aharon, P., and Vai, G. B. 1994. Hydrocarbon-derived imprints in olistostromes of the Early Serravallian Marnoso-arenacea Formation, Romagna Apennines (northern Italy). Geo-Marine Letters, 14:192200.CrossRefGoogle Scholar
Campbell, K. A. 1989. A Mio-Pliocene methane seep fauna and associated authigenic carbonates in shelf sediments of the Quinault Formation, SW Washington. Geological Society of America Abstracts with Program, 21:A290.Google Scholar
Campbell, K. A. 1992. Recognition of a Mio-Pliocene cold seep setting from the northeast Pacific convergent margin, Washington, U.S.A. Palaios, 7:422433.CrossRefGoogle Scholar
Campbell, K. A., and Bottjer, D. J. 1993. Fossil cold seeps (Jurassic-Pliocene) along the convergent margin of western North America. National Geographic Research and Exploration, 9:326343.Google Scholar
Campbell, K. A., Carlson, C., and Bottjer, D. J. 1993. Fossil cold seep limestones and associated chemosymbiotic macroinvertebrate faunas, Jurassic-Cretaceous Great Valley Group, California, p. 3750. In Graham, S. and Lowe, W. (eds.), Advances in the sedimentary geology of the Great Valley Group. Pacific Section, Society of Economic Paleontologists and Mineralogists, 73.Google Scholar
Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., and Waterbury, J. B. 1981. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: Possible chemoautotrophic symbionts. Science, 213:340342.CrossRefGoogle ScholarPubMed
Clari, P., Gagliardi, C., Governa, M. E., Ricci, B., and Zuppi, G. M. 1988. I calcari de Marmorito: Una testimonianza di processi diagenetici in presenza di metano. Dal Bolletino del Museo Regionale di Scienze Naturali Torino, 6:197216.Google Scholar
Cook, T. L., and Stakes, D. S. 1995. Biogeological mineralization in deep-sea hydrothermal deposits. Science, 267:19751979.CrossRefGoogle ScholarPubMed
Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, R. P., Von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., and Van Handel, T. H. 1979. Submarine thermal springs on the Galapagos Rift. Science, 203:10731083.CrossRefGoogle ScholarPubMed
Dando, P. R., Southward, A. J., Southward, E. C., Dixon, D. R., Crawford, A., and Crawford, M. 1992. Shipwrecked tube worms. Nature, 356:667.CrossRefGoogle Scholar
De Angelis, M. A., Reysenbach, A.-L., and Baross, J. A. 1991. Surfaces of hydrothermal vent invertebrates: Sites of elevated microbial CH4 oxidation activity. Limnology and Oceanography, 36:570577.CrossRefGoogle Scholar
Gaillard, C., Rio, M., Rolin, Y., and Roux, M. 1992. Fossil chemosynthetic communities related to vents or seeps in sedimentary basins: the pseudobioherms of southeastern France compared to other world examples. Palaios, 7:451465.CrossRefGoogle Scholar
Goedert, J. L., and Benham, S. R. 1999. A new species of Depressigyra? (Gastropoda: Peltospiridae) from cold-seep carbonates in Eocene and Oligocene rocks of western Washington. The Veliger, 42:97101.Google Scholar
Goedert, J. L., and Campbell, K. A. 1995. An early Oligocene chemosynthetic community from the Makah Formation, northwestern Olympic Peninsula, Washington. The Veliger, 38:2229.Google Scholar
Goedert, J. L., and Kaler, K. L. 1996. A new species of Abyssochrysos (Gastropoda: Loxonematoidea) from a middle Eocene cold-seep carbonate in the Humptulips Formation, western Washington. The Veliger, 39:6570.Google Scholar
Goedert, J. L., and Squires, R. L. 1990. Eocene deep-sea communities in localized limestones formed by subduction-related methane seeps, southwestern Washington. Geology, 18:11821185.2.3.CO;2>CrossRefGoogle Scholar
Grossman, E. L., and Ku, T.-L. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology, 59:5974.CrossRefGoogle Scholar
Halanych, K. M., Lutz, R. A., and Vrijenhoek, R. C. 1998. Evolutionary origins and age of vestimentiferan tube-worms. Cahiers de Biologie Marine, 39:355358.Google Scholar
Haymon, R. C., Koski, R. A., and Sinclair, C. 1983. Fossils of hydrothermal vent worms from Cretaceous sulfide ores of the Samail ophiolite, Oman. Science, 223:14071409.CrossRefGoogle Scholar
Hecker, B. 1985. Fauna from a cold sulfur-seep in the Gulf of Mexico: comparison with hydrothermal vent communities and evolutionary implications, p. 465473. In Jones, M. L. (ed.), Hydrothermal vents of the eastern Pacific: an overview. Bulletin of the Biological Society of Washington, 6.Google Scholar
James, N. P., and Ginsburg, R. N. 1979. The seaward margin of the Belize Barrier and Atoll Reefs. IAS Special Publication, 3:1191.Google Scholar
Jones, M. L. 1985. On the Vestimentifera, new phylum: six new species, and other taxa, from hydrothermal vents and elsewhere, p. 117158. In Jones, M. L. (ed.), Hydrothermal vents of the eastern Pacific: an overview. Bulletin of the Biological Society of Washington, 6.Google Scholar
Kauffman, E. G., Arthur, M. A., Howe, B., and Scholle, P. A. 1996. Widespread venting of methane-rich fluids in late Cretaceous (Campanian) submarine springs (Tepee Buttes), western interior seaway, U.S.A. Geology, 24:799802.2.3.CO;2>CrossRefGoogle Scholar
Kulm, L. D., and Suess, E. 1990. Relationship between carbonate deposits and fluid venting: Oregon accretionary prism. Journal of Geophysical Research, 95(B6):88998915Google Scholar
Little, C. T. S., Herrington, R. J., Maslennikov, V. V., and Zaykov, V. V. 1998. The fossil record of hydrothermal vent communities, p. 259270. In Mills, R. A. and Harrison, K. (eds.), Modern ocean floor processes and the geological record. Geological Society, London, Special Publications 148.Google Scholar
Lonsdale, P. F. 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Research, 24:857863.CrossRefGoogle Scholar
Mazzullo, S. J., and Cys, J. M. 1979. Marine aragonite sea-floor growth and cement in Permian phylloid algal mounds, Sacramento Mountains, New Mexico. Journal of Sedimentary Petrology, 49:917936.Google Scholar
McCrea, C. M. 1950. The isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics, 18:849857.CrossRefGoogle Scholar
Naganuma, T., Okayama, Y., Hattori, M., and Kanie, Y. 1995. Fossil worm tubes from the presumed cold-seep carbonates of the Miocene Hayama Group, central Miura Peninsula, Japan. Island Arc, 4:199207.CrossRefGoogle Scholar
Niitsuma, N., Matsushima, Y., and Hirata, D. 1989. Abyssal molluscan colony of Calyptogena in the Pliocene strata of the Miura Peninsula, central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 71:193203.CrossRefGoogle Scholar
Paull, C. K., Hecker, B., Commeau, R., Freeman-Lynde, R. P., Neumann, A. C., Corso, W. P., Golubic, S., Hook, J. E., Sikes, E., and Curray, J. 1984. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science, 226:965967.CrossRefGoogle Scholar
Paull, C. K., Chanton, J. P., Neumann, A. C., Coston, J. A., Martens, C. S., and Showers, W. 1992. Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits: examples from the Florida Escarpment. Palaios, 7:361375.CrossRefGoogle Scholar
Peckmann, J., Walliser, O. H., Riegel, W., and Reitner, J. 1999a. Signatures of hydrocarbon venting in a Middle Devonian carbonate mound (Hollard Mound) at the Hamar Laghdad (Antiatlas, Morocco). Facies, 40:281296.CrossRefGoogle Scholar
Peckmann, J., Thiel, V., Michaelis, W., Clari, P., Gaillard, C., Martire, L., and Reitner, J. 1999b. Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): microbially induced authigenic carbonates. International Journal of Earth Sciences, 88:6075.CrossRefGoogle Scholar
Prothero, D. R., and Armentrout, J. M. 1985. Magnetostratigraphic correlation of the Lincoln Creek Formation, Washington: Implications for the age of the Eocene/Oligocene boundary. Geology, 13:208211.2.0.CO;2>CrossRefGoogle Scholar
Rau, W. W. 1966. Stratigraphy and Foraminifera of the Satsop River Area, southern Olympic Peninsula, Washington. State of Washington, Division of Mines and Geology Bulletin, 53, 66 p.Google Scholar
Reitner, J. 1993. Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia): Formation and concepts. Facies, 29:340.CrossRefGoogle Scholar
Rigby, J. K., and Goedert, J. L. 1996. Fossil sponges from a localized cold-seep limestone in Oligocene rocks of the Olympic Peninsula, Washington. Journal of Paleontology, 70:900908.CrossRefGoogle Scholar
Roberts, H. H., and Aharon, P. 1994. Hydrocarbon-derived carbonate buildups of the northern Gulf of Mexico continental slope: a review of submersible investigations. Geo-Marine Letters, 14:135148.CrossRefGoogle Scholar
Roberts, H. H., Aharon, P., and Walsh, M. M. 1993. Cold-seep carbonates of the Louisiana continental slope-to-basin floor, p. 95104. In Microfabrics, Springer Verlag.CrossRefGoogle Scholar
Rolin, Y., Gaillard, C., and Roux, M. 1990. Ecologie de pseudobiohermes de Terres Noires jurassiques liés à des paléosources sousmarines. Le site Oxfordien de Beauvoisin (Drǒme, Bassin du Sud-Est, France). Palaeogeography, Palaeoclimatology, Palaeoecology, 80:79105.CrossRefGoogle Scholar
Schmaljohann, R., and Flügel, H. J. 1987. Methane-oxidizing bacteria in Pogonophora. Sarsia, 72:9198.CrossRefGoogle Scholar
Scott, K. M., and Fisher, C. R. 1995. Physiological ecology of sulfide metabolism in hydrothermal vent and cold seep vesicomyid clams and vestimentiferan tube worms. American Zoologist, 35:102111.CrossRefGoogle Scholar
Shillito, B., Lechaire, J.-P., Goffinet, G., and Gaill, F. 1995. Composition and morhogenesis of the tubes of vestimentiferan worms, p. 295302. In Parson, L. M., Walker, C. L., and Dixon, D. R. (eds.), Hydrothermal vents and processes. Geological Society of America Special Publication 87.Google Scholar
Smith, C. R., Kukert, H., Wheatcroft, R. A., Jumars, P. A., and Deming, J. W. 1989. Vent fauna on whale remains. Nature, 341:2728.CrossRefGoogle Scholar
Southward, E. C. 1982. Bacterial symbionts in Pogonophora. Journal of the Marine Biological Association of the United Kingdom, 62:889906.CrossRefGoogle Scholar
Southward, E. C. 1991. Three new species of Pogonophora, including two vestimentiferans, from hydrothermal sites in the Lau Back-arc Basin (Southwest Pacific Ocean). Journal of Natural History, 25:859881.CrossRefGoogle Scholar
Squires, R. L. 1995. First fossil species of the chemosynthetic-community gastropod Provanna: localized cold-seep limestones in upper Eocene and Oligocene rocks, Washington. The Veliger, 38:3036.Google Scholar
Squires, R. L., and Goedert, J. L. 1994. A new species of the volutid gastropod Fulgoraria (Musashia) from the Oligocene of Washington. The Veliger, 37:400409.Google Scholar
Squires, R. L., and Goedert, J. L. 1995. An extant species of Leptochiton (Mollusca: Polyplacophora) in Eocene and Oligocene cold-seep limestones, Olympic Peninsula, Washington. The Veliger, 38:4753.Google Scholar
Suess, E., Carson, B., Ritger, S., Moore, J. C., Jones, M. L., Kulm, L. D., and Cochrane, G. R. 1985. Biological communities at vent sites along the subduction zone off Oregon, p. 475484. In Jones, M. L. (ed.), Hydrothermal vents of the eastern Pacific: an overview. Bulletin of the Biological Society of Washington, 6.Google Scholar