Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T08:13:13.208Z Has data issue: false hasContentIssue false

Wall structures in selected Paleozoic Lagenide foraminifera

Published online by Cambridge University Press:  14 July 2015

John R. Groves
Affiliation:
Department of Earth Science, University of Northern Iowa, Cedar Falls 50614-0335,
Roberto Rettori
Affiliation:
Dipartimento Scienze della Terra, Università degli Studi di Perugia, Piazza Università 06123 Perugia, Italy,
Demír Altiner
Affiliation:
Department of Geological Engineering, Middle East Technical University, 06531 Ankara, Turkey,

Abstract

Paleozoic lagenide foraminifera are strikingly similar morphologically to Mesozoic and Cenozoic Lagenida, but because benthic foraminifers suffered a catastrophic reduction in diversity during the end-Permian mass extinction, it is unclear whether the similarities of Paleozoic lagenides and younger unquestioned Lagenida link them evolutionarily or are the product of convergence. Seven species representing five families of Paleozoic lagenide foraminifers were examined and found to possess mostly monolamellar hyaline-radial walls, as in extant nodosariid Lagenida. Exceptions are Protonodosaria rauserae Gerke, 1959, whose wall is not optically radial, and Syzrania amazonica Altiner and Savini, 1997, whose hyaline-radial wall may or may not be accompanied by a secreted inner microgranular layer. The inner microgranular layer is an element that is thought to have been inherited from the ancestral Fusulinida. Its absence in all but the earliest and morphologically simplest Paleozoic lagenides indicates more advanced wall structure than generally has been ascribed to this group. The wall in Pachyphloia spp. is secondarily thickened, suggesting plesio- or ortho-monolamellar construction, whereas other examined species exhibit atelo-monolamellar wall structure. These types of lamellarity are common among modern nodosariids. Thus, on the basis of not only morphologic similarity but also similar wall structure, we strongly suspect evolutionary continuity of lagenides across the Permian-Triassic boundary. The question is not completely resolved, however, because lagenides have not yet been recovered from lowest Triassic rocks.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altiner, D., and Savini, R. 1997. New species of Syzrania from the Amazonas and Solimões basins (north Brazil): remarks on the generic and suprageneric position of syzraniid foraminifers. Revue de Paléobiologie, 16:720.Google Scholar
Bellemo, S. 1974. Ultrastructures in Recent radial and granular calcareous foraminifera. Bulletin of the Geological Institute, Uppsala University, n.s., 4:117122.Google Scholar
Brady, H. B. 1876. A monograph of Carboniferous and Permian foraminifera (the genus Fusulina excepted). Palaeontological Society Monographs, 30:1166.CrossRefGoogle Scholar
Brasier, M. D. 1988. Foraminiferal extinction and ecological collapse during global biological events, p. 3764. In Larwood, G. P. (ed.), Extinction and Survival in the Fossil Record. Systematics Association and Clarendon Press, Oxford.Google Scholar
Broglio-Loriga, C., and Cassinis, G. 1992. The Permo–Triassic boundary in the southern Alps (Italy) and in adjacent Periadriatic regions, p. 7897. In Sweet, W. C., Yang, Z., Dickins, J. M., and Yin, H. (eds.), Permo-Triassic events in the eastern Tethys. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Broglio-Loriga, C., Neri, C., Pasini, M., and Posenato, R. 1988. Marine fossil assemblages from Upper Permian to lowermost Triassic in the western Dolomites (Italy), p. 544. In Cassinis, G. (ed.), Permian and Permian–Triassic Boundary in the South-Alpine Segment of the Western Tethys, and Additional Regional Reports. Memoire della Società Geologica Italiana, 34.Google Scholar
Brotzen, F. 1963. Evolutionary trends in certain calcareous foraminifera on the Palaeozoic-Mesozoic boundary, p. 6678. In von Koenigswald, G. H. R., Emeis, J. D., Buning, W. L., and Wagner, C. W. (eds.), Evolutionary Trends in Foraminifera. Elsevier Publishing Company, Amsterdam.Google Scholar
Cifelli, R. 1969. Radiation of Cenozoic planktonic foraminifera. Systematic Zoology, 18:154168.CrossRefGoogle Scholar
Colani, M. 1924. Nouvelle contribution à l'étude des fusulinidés de l'Extrême-Orient. Mémoires Service géologique de l'Indochine, 11:1191.Google Scholar
Cummings, R. H. 1955. Nodosinella Brady 1876, and associated Upper Paleozoic genera. Micropaleontology, 1:221238.CrossRefGoogle Scholar
Cushman, J. A. 1928. Foraminifera: Their Classification and Economic Use. Cushman Laboratory for Foraminiferal Research Special Publication, 1:1401.Google Scholar
Cushman, J. A. 1940. Foraminifera: Their Classification and Economic Use, (third Edition). Harvard University Press, Cambridge.Google Scholar
Erwin, D. H. 1993. The Great Paleozoic Crisis. Columbia University Press, New York, 327 p.Google Scholar
Erwin, D. H., and Droser, M. E. 1993. Elvis taxa. Palaios, 8:623624.CrossRefGoogle Scholar
Erwin, D. H., Bowring, S. A., and Yugan, J. 2002. End-Permian mass extinctions: a review, p. 363383. In Koeberl, C. and MacLeod, K. G. (eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Paper, 356.Google Scholar
Galloway, J. J. 1933. A Manual of Foraminifera. Principia Press, Bloomington, Indiana, 483 p.Google Scholar
Gerke, A. A. 1952. Microfauna from Permian deposits of the Nordvik District and their stratigraphic indications. Nauchno-issledovatel'skii Institut Geologii Arktiki (Leningrad), 28:1209. (In Russian)Google Scholar
Gerke, A. A. 1957. On some important internal characters in foraminifers of the family Lagenidae in material from Permian, Triassic and Liassic deposits of the Soviet Arctic. Nauchno-Issledovatel'skii Institut Geologii Arktiki, Ministerstva Geologii i Okhran' Nedr, Sbornik Statei po Paleontologii i Biostratigrafii, 4:1126. (In Russian)Google Scholar
Gerke, A. A. 1959. On a new genus of Permian nodosariid foraminifera and the limiting characteristics of the genus Nodosaria. Nauchno-Is-sledovatel'skii Institut Geologii Arktiki (Leningrad), 17:4159. (In Russian)Google Scholar
Glaessner, M. F. 1945. Principles of Micropaleontology. Melbourne University Press, Melbourne, 296 p.Google Scholar
Glaessner, M. F. 1963. Major trends in the evolution of the foraminifera, p. 924. In von Koenigswald, G. H. R., Emeis, J. D., Buning, W. L., and Wagner, C. W. (eds.), Evolutionary Trends in Foraminifera. Elsevier Publishing Company, Amsterdam.Google Scholar
Gr⊘nlund, H., and Hansen, H. J. 1976. Scanning electron microscopy of some Recent and fossil nodosariid foraminifera. Bulletin of the Geological Society of Denmark, 25:121134.CrossRefGoogle Scholar
Groves, J. R. 1997. Repetitive patterns of evolution in Late Paleozoic foraminifers, p. 5154. In Ross, C. A., Ross, J. R. P., and Brenckle, P. L. (eds.), Late Paleozoic Foraminifera—Their Biostratigraphy, Evolution, and Paleoecology and the Mid-Carboniferous Boundary. Cushman Foundation for Foraminiferal Research Special Publication, 36.Google Scholar
Groves, J. R. 2000. Suborder Lagenina and other smaller foraminifers from uppermost Pennsylvanian–lower Permian rocks of Kansas and Oklahoma. Micropaleontology, 46:285326.Google Scholar
Groves, J. R., and Boardman, D. R. Jr. 1999. Calcareous smaller foraminifers from the Lower Permian Council Grove Group near Hooser, Kansas. Journal of Foraminiferal Research, 29:243262.Google Scholar
Groves, J. R., and Wahlman, G. P. 1997. Biostratigraphy and evolutión of Late Carboniferous and Early Permian smaller foraminifers from the Barents Sea (offshore Arctic Norway). Journal of Paleontology, 71:758779.CrossRefGoogle Scholar
Groves, J. R., Altiner, D., and Rettori, R. 2003. Origin and early evolutionary radiation of the Order Lagenida (Foraminifera). Journal of Paleontology, 77:831843.2.0.CO;2>CrossRefGoogle Scholar
Hallam, A., and Wignall, P. B. 1997. Mass Extinctions and Their Aftermath. Oxford University Press, Oxford, 307 p.CrossRefGoogle Scholar
Hansen, H. J. 1968. X-ray diffractometer investigations of a radiate and a granulate foraminifera. Dansk Geologisk Forening, Meddelelser, 18:345348.Google Scholar
Hansen, H. J. 1970. Electron-microscopical studies on the ultrastructure of some perforate calcitic radiate and granulate foraminifera. Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter, 17:116.Google Scholar
Hansen, H. J. 1979. Test structure and evolution in the foraminifera. Lethaia, 12:173182.CrossRefGoogle Scholar
Hohenegger, J. 1997. Morphological niches as tools for phylogenetic analysis: Permian and Triassic Lagenina as a case study, p. 6370. In Ross, C. A., Ross, J. R. P., and Brenckle, P. L. (eds.), Late Paleozoic Foraminifera—Their Biostratigraphy, Evolution, and Paleoecology and the Mid-Carboniferous Boundary. Cushman Foundation for Foraminiferal Research Special Publication, 36.Google Scholar
Hohenegger, J., and Piller, W. 1975. Wandstrukturen und Großgliederung der Foraminiferen. Sitzungsberichten der Österreiche Akademie der Wissenschaften Mathematisch-naturwissenschaftliche Klasse, Abteilung I, 184:6796.Google Scholar
Kobayashi, F. 1997. Upper Permian foraminifers from the Iwai-Kanyo area, west Tokyo, Japan. Journal of Foraminiferal Research, 27:186195.CrossRefGoogle Scholar
Lange, E. 1925. Eine Mittelpermische Fauna von Guguk Bulat (Padanger Oberland, Sumatra). Verhandelingen van het Geologisch-Mijnbouwkundig Genootschap voor Nederland en Koloniën, Geologische serie, 7:213295.Google Scholar
Loeblich, A. R. Jr., and Tappan, H. 1964. Sarcodina, chiefly “theocamoebians” and Foraminiferida, Part C. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Protista 2. Geological Society of America and Kansas University Press, Lawrence.Google Scholar
Loeblich, A. R. Jr., and Tappan, H. 1974. Recent advances in the classification of the Foraminiferida, p. 153. In Hedley, R. H. and Adams, C. G. (eds.), Foraminifera. Academic Press, London.Google Scholar
Loeblich, A. R. Jr., and Tappan, H. 1981. Suprageneric revisions of some calcareous Foraminiferida. Journal of Foraminiferal Research, 11:159164.CrossRefGoogle Scholar
Loeblich, A. R. Jr., and Tappan, H. 1984. Suprageneric classification of the Foraminiferida (Protozoa). Micropaleontology, 30:170.CrossRefGoogle Scholar
Loeblich, A. R. Jr., and Tappan, H. 1987. Foraminiferal Genera and Their Classification. Van Nostrand Reinhold Company, New York. [Imprinted 1988]Google Scholar
Mamet, B. L., and Pinard, S. 1992. Note sur la taxonomie des petits foraminifères du Paléozoïque supérieur. Bulletin de la Société belge de Géologie, 99:373397.Google Scholar
Norling, E. 1968. On Liassic nodosariid foraminifera and their wall structures. Sveriges Geologiska Undersökning, Ser C, Nr 623, Årsbok 61, Nr 8:175.Google Scholar
N⊘rvang, A. 1957. The foraminifera of the Lias Series in Jutland, Denmark. Dansk Geologisk Forening, Meddelelser, 13:1135.Google Scholar
Palmieri, V. 1983. Biostratigraphic appraisal of Permian foraminifera from the Denison Trough-Bowen Basin (central Queensland). Geological Society of Australia, Queensland Division, Permian Geology of Queensland, 139154.Google Scholar
Palmieri, V. 1994. Permian foraminifera in the Bowen Basin, Queensland. Queensland Geology, 6:1126.Google Scholar
Pawlowski, J. 2000. Introduction to the molecular systematics of foraminifera, p. 112. In Lee, J. J. and Hallock, P. (eds.), Advances in the Biology of Foraminifera. Micropaleontology 46, Supplement 1.Google Scholar
Pawlowski, J., Bolivar, I., Fahrni, J. F., De Vargas, C., Gouy, M., and Zaninetti, L. 1997. Extreme differences in rates of molecular evolution of foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. Molecular Biology and Evolution, 14:498505.CrossRefGoogle ScholarPubMed
Pinard, S., and Mamet, B. L. 1998. Taxonomie des petits foraminifères du Carbonifère supérieur-Permien inférieur du bassin de Sverdrup, Arctique canadien. Palaeontographica Canadiana, 15:1253.Google Scholar
Rampino, M. R., and Adler, A. C. 1998. Evidence for abrupt latest Permian mass extinction of foraminifera: results of tests for the Signor-Lipps effect. Geology, 26:415418.2.3.CO;2>CrossRefGoogle Scholar
Rauser-Chernousova, D. M. 1949. On the ontogenesis of some Paleozoic foraminifers. Akademiya Nauk SSSR, Trudy Paleontologicheskogo Institut, 20:339353. (In Russian)Google Scholar
Rauser-Chernousova, D. M. 1992. On the systematic position of Devonian nodosariids and composition of the superorder Lagenoida (Foraminifera). Rossiiskaya Akademiya Nauk, Paleontologicheskii Zhurnal, 26:112. (In Russian)Google Scholar
Rauser-Chernousova, D. M., and Fursenko, A. V. 1937. Determination of Foraminifers from the Oil-Producing Regions of the USSR. Glavnaya Redaktsya Gorno-Toplivnoi Literatury Leningrad, Moskva, 315 p. (In Russian)Google Scholar
Reichel, M. 1946. Sur quelques foraminiferès nouveaux du Permien méditerranéan. Eclogae Geologicae Helvetiae, 38:524560.Google Scholar
Reitlinger, E. A. 1950. Foraminifera from the Middle Carboniferous deposits of the central part of the Russian Platform (exclusive of the family Fusulinidae). Akademiya Nauk SSSR, Institut Geologicheskii Nauk, Trudy, vypusk 126, Geologicheskii Seriya, 47:1127. (In Russian)Google Scholar
Reiss, Z. 1963. Reclassification of perforate foraminifera. State of Israel Ministry of Development, Geological Survey Bulletin, 35:1111.Google Scholar
de Civrieux, J. M. Sellier, and Dessauvagie, T. F. J. 1965. Reclassification de quelques Nodosariidae, particulièrement du Permien au Lias. Maden Tetkík ve Enstítüsü Yayinlarindan (Publications de l'Institut d'Études et de Recherches Minières de Turquie), 124:1178.Google Scholar
Gupta, B. K. Sen 1999. Systematics of modern foraminifera, p. 736. In Gupta, B. K. Sen (ed.), Modern Foraminifera. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
Sheng, J. C. 1955. Some fusulinids from Changhsing Limestone. Acta Palaeontologica Sinica, 3:287308. (In Chinese and English)Google Scholar
Spandel, E. 1901. Die Foraminiferen des Permo-Carbon von Hooser, Kansas, Nord Amerika. Festschrift, Saecular-Freier der Naturhistorischen Gesellschaft in Nürnberg 1801–1901:177194.Google Scholar
Stancliffe, R. P. W. 1996. Chapter 13D–Microforaminiferal linings, p. 373379. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications, 1. American Association of Stratigraphic Palynologists Foundation. Publishers Press, Salt Lake City.Google Scholar
Tappan, H., and Loeblich, A. R. Jr. 1988. Foraminiferal evolution, diversification, and extinction. Journal of Paleontology, 62:695714.Google Scholar
Tong, J. 1993. 4.1.1—Foraminifera, p. 9097. In Yang, Z., Wu, S., Yin, H., Xu, G., Zhang, K., and Bi, X. (eds.), Permo-Triassic Events of South China. Geological Publishing House, Beijing.Google Scholar
Tong, J., and Shi, G. R. 2000. Evolution of the Permian and Triassic foraminifera in South China, p. 291307. In Yin, H., Dickins, J. M., Shi, G. R., and Tong, J. (eds.), Permian-Triassic Evolution of Tethys and Western Circum-Pacific. Developments in Palaeontology and Stratigraphy, 18. Elsevier, Amsterdam.CrossRefGoogle Scholar
Towe, K. M., and Cifelli, R. 1967. Wall ultrastructure in the calcareous foraminifera: crystallographic aspects and a model for calcification. Journal of Paleontology, 41:742762.Google Scholar
Visscher, H. 1971. The Permian and Triassic of the Kingscourt Outlier, Ireland. A palynological investigation related to regional stratigraphical problems in the Permian and Triassic of western Europe. Geological Survey of Ireland, Special Paper, 1:1114.Google Scholar
Wood, A. 1949. The structure of the wall of the test in the foraminifera: its value in classification. Quarterly Journal of the Geological Society of London, 104:229255.CrossRefGoogle Scholar