Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T12:00:03.517Z Has data issue: false hasContentIssue false

Upper Ordovician crinoids from the Platteville Limestone of northeastern Iowa

Published online by Cambridge University Press:  14 July 2015

James C. Brower*
Affiliation:
Heroy Geology Laboratory, Syracuse University, Syracuse, New York 13244—1070

Abstract

The Platteville crinoid fauna of northeastern Iowa consists of six species: Abludoglyptocrinus charltoni (Kolata, 1975), Carabocrinus sp. Kolata, 1975, Cupulocrinus plattevillensis Kolata, 1975, Ectenocrinus simplex (Hall, 1847), Merocrinus britonensis Kolata, 1975, and Porocrinus pentagonius Meek and Worthen, 1865. Other echinoderms include an unidentified cyclocystoid and several rhombiferan and crinoid plates. the echinoderms are mostly associated with a variety of passive suspension and filter feeders, principally brachiopods and bryozoans. Complete crowns and columns are available for the porocrinid and cupulocrinid, which lived at elevations of 28 and 50–60 mm above the seafloor, respectively. Although entire stems are not preserved, specimens from other stratigraphic units suggest that Abludoglyptocrinus charltoni, Ectenocrinus simplex, and Merocrinus britonensis occupied higher areas above the seafloor. the elevation of the carabocrinid is not known. the cyclocystoid was located on the seafloor. the crinoids are ecologically separated in two ways: different elevations above the substrate and food groove width, which is correlated with the size of the food items taken. the high-level crinoids mainly ate a narrow range of small items. However, the crinoids at lower levels caught many larger food particles and utilized a much wider range of food sizes. Cup growth of Cupulocrinus plattevillensis is isometric except for the heights of the infrabasals and radials, which exhibit significant positive and negative allometry relative to overall size. the proximal brachs are strongly allometric in which the widths increase much more rapidly than the heights.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W. I. 1980. A model for differentiation in lower Mississippian crinoid communities. Journal of Paleontology, 54:273288.Google Scholar
Ausich, W. I. 1996. Phylum Echinodermata, p. 242261. In Feldmann, R. M. and Hackathorn, M. (eds.), Fossils of Ohio. Ohio Geological Survey Bulletin, 70.Google Scholar
Ausich, W. I., Gil Cid, M. D., and Alonso, P. D. 2002. Ordovician [Dobrotivian (Llandeillian Stage) to Ashgill] crinoids (Phylum Echinodermata) from the Montes de Toledo and Sierra Morena, Spain with implications for paleogeography of peri-Gondwana. Journal of Paleontology, 76:975992.2.0.CO;2>CrossRefGoogle Scholar
Bassler, R. S. 1915. Bibliographic index of American Ordovician and Silurian fossils. United States National Museum Bulletin, 92, 1521 p.Google Scholar
Bassler, R. S., and Moodey, M. W. 1943. Bibliographic and faunal index of Paleozoic pelmatozoan echinoderms. Geological Society of America Special Paper, 45, 734 p.Google Scholar
Bather, F. A. 1899. A phylogenetic classification of the Pelmatozoa. British Association for the Advancement of Science, Report for 1898, p. 916922.Google Scholar
Billings, E. 1857. New species of fossils from Silurian rocks of Canada. Canada Geological Survey Report of Progress 1853–1856, Report for the Year 1856, p. 247345.Google Scholar
Billings, E. 1859. On the Crinoideae of the Lower Silurian rocks of Canada, Figures and Descriptions of Canadian Organic Remains, Decade IV:766.Google Scholar
Brett, C. E. 1981. Terminology and functional morphology of attachment structures in pelmatozoan echinoderms. Lethaia, 14:343370.CrossRefGoogle Scholar
Brett, C. E. 1999. Middle Ordovician Trenton Group of New York, USA, p. 6367. In Hess, H., Ausich, W. I., Brett, C. E., and Simms, M. J. (eds.), Fossil Crinoids. Cambridge University Press, Cambridge, United Kingdom.CrossRefGoogle Scholar
Brower, J. C. 1973. Crinoids from the Girardeau Limestone (Ordovician). Palaeontographica Americana, 7:261499.Google Scholar
Brower, J. C. 1978. Postlarval ontogeny of fossil crinoids, camerates, p. T244T263. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology. Pt. T. Echinodermata 2. The Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Brower, J. C. 1992a. Cupulocrinid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 66:99128.CrossRefGoogle Scholar
Brower, J. C. 1992b. Hybocrinid and disparid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 66:973993.CrossRefGoogle Scholar
Brower, J. C. 1994. Camerate crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 68:570599.CrossRefGoogle Scholar
Brower, J. C. 1995. Eoparisocrinid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 69:351366.CrossRefGoogle Scholar
Brower, J. C. 1997. Homocrinid crinoids from the Upper Ordovician of northern Iowa and southern Minnesota. Journal of Paleontology, 71:442458.CrossRefGoogle Scholar
Brower, J. C. 2002. Cupulocrinus angustatus (Meek and Worthen), a cladid crinoid from the Upper Ordovician Maquoketa Formation of the northern midcontinent. Journal of Paleontology, 76:109122.2.0.CO;2>CrossRefGoogle Scholar
Brower, J. C. 2006. Ontogeny of the food-gathering system in Ordovician crinoids. Journal of Paleontology, 80:430446.CrossRefGoogle Scholar
Brower, J. C., and Kile, K. M. 1994. Paleoautecology and ontogeny of Cupulocrinus levorsoni Kolata, a Middle Ordovician crinoid from the Guttenberg Formation of Wisconsin, p. 2544. In Landing, E. (ed.), Studies in Stratigraphy and Paleontology in Honor of Donald W. Fisher. New York State Museum Bulletin, 481.Google Scholar
Brower, J. C., and Veinus, J. 1978. Middle Ordovician crinoids from the Twin Cities area of Minnesota. Bulletins of American Paleontology, 74(304):373506.Google Scholar
Donovan, S. K. 1986. Pelmatozoan columnals from the Ordovician of the British Isles, Pt. 1. Palaeontographical Society, London, Monograph, 138(568):168.Google Scholar
Donovan, S. K., Paul, C. R. C., and Lewis, D. N. 1996. Echinoderms, p. 202267. In Harper, D. A. T. and Owen, A. W. (eds.), Fossils of the Upper Ordovician, Palaeontological Association (London), Field Guides to Fossils, Number 7.Google Scholar
d'Orbigny, A. D. 1850. Prodome du paléontologie stratigraphique universelle des animaux mollusques et rayonnés faisant suite au cours élémentaire de paléontologie et de géologie stratigraphique, 1:1392. Victor Masson, Paris.CrossRefGoogle Scholar
Glass, A., Ausich, W. I., and Copper, P. 2003. New cyclocystoid (Phylum Echinodermata) from Anticosti Island, Quebec, and its bearing on cyclocystoid life modes. Journal of Paleontology, 77:949957.2.0.CO;2>CrossRefGoogle Scholar
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews, 41:587640.Google ScholarPubMed
Grant, J. A. 1881. Description of a new species of Porocrinus from the Trenton Limestone. Ottawa Field Naturalist's Club, Transactions, Number 2, p. 4244.Google Scholar
Hall, J. 1847. Palaeontology of New York. Volume 1. Containing Descriptions of the Organic Remains of the Lower Division of the New-York System (equivalent of the Lower Silurian rocks of Europe). Natural History of New York, Pt. 6. D. Appleton & Company, New York, 338 p.Google Scholar
Imbrie, J. 1956. Biometrical methods in the study of invertebrate fossils. American Museum of Natural History Bulletin, 108:211252.Google Scholar
Kesling, R. V., and Paul, C. R. C. 1968. New species of Porocrinidae and brief remarks upon these unusual crinoids. The University of Michigan Contributions from the Museum of Paleontology, 22(1):132.Google Scholar
Kirk, E. 1914. Notes on the fossil crinoid genus Homocrinus Hall. United States National Museum Proceedings, 46:473483.CrossRefGoogle Scholar
Kolata, D. R. 1975. Middle Ordovician echinoderms from northern Illinois and southern Wisconsin. Paleontological Society Memoir 7 (Journal of Paleontology, 49[3] Supplement), 74 p.Google Scholar
Kolata, D. R. 1982. Camerates, p. 170205. In Sprinkle, J. (ed.), Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions, Monograph 1.Google Scholar
Kolata, D. R. 1986. Crinoids of the Champlainian (Middle Ordovician) Guttenberg Formation—Upper Mississippi Valley region. Journal of Paleontology, 60:711718.CrossRefGoogle Scholar
Kolata, D. R., Brower, J. C., and Frest, T. J. 1987. Upper Mississippi Valley Champlainian and Cincinnatian echinoderms. Minnesota Geological Survey Report of Investigations, 35:179181.Google Scholar
Levorson, C. O., and Gerk, A. J. 1975. Field recognition of subdivision of the Galena Group within Winneshiek County. Guidebook for Field Gathering of Iowa, Minnesota, and Wisconsin Academies of Science, 1975:117.Google Scholar
Levorson, C. O., Gerk, A. J., Sloan, R. E., and Bisagno, L. A. 1987. General section of the Middle and Late Ordovician strata of northeastern Iowa. Minnesota Geological Survey Report of Investigations, 35:2539.Google Scholar
Meek, F. B., and Worthen, A. H. 1865. Descriptions of new species of Crinoidea, etc., from the Palaeozoic rocks of Illinois and some of the adjoining states. Philadelphia Academy of Natural Sciences Proceedings, 17:143155.Google Scholar
Meek, F. B., and Worthen, A. H. 1868. Fossils of the Cincinnati Group. Illinois Geological Survey, 3:324343.Google Scholar
Meek, F. B., and Worthen, A. H. 1870. Descriptions of new species and genera of fossils from the Palaeozoic rocks of the western states. Philadelphia Academy of Natural Sciences Proceedings, 22:2256.Google Scholar
Messing, C. G. 1997. Living comatulids, p. 330. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, 3.Google Scholar
Meyer, D. L. 1982a. Food and feeding mechanisms: Crinozoa, p. 2542. In Jangoux, M. and Lawrence, J. M. (eds.), Echinoderm Nutrition. A. A. Balkema, Rotterdam.Google Scholar
Meyer, D. L. 1982b. Food composition and feeding behavior of sympatric species of comatulid crinoids from the Palau Islands (western Pacific), p. 4349. In Lawrence, J. M. (ed.), Echinoderms: Proceedings of the International Conference, Tampa Bay. A. A. Balkema, Rotterdam.Google Scholar
Meyer, D. L., Miller, A. I., Holland, S. M., and Dattilo, B. F. 2002. Crinoid distribution and feeding morphology through a depositional sequence: Kope and Fairview Formations, Upper Ordovician, Cincinnati Arch region. Journal of Paleontology, 76:725732.2.0.CO;2>CrossRefGoogle Scholar
Miller, J. S. 1821. A Natural History of the Crinoidea or Lily-Shaped Animals, With Observation on the Genera, Asteria, Euryale, Comatula, and Marsupites . Bryan & Company, Bristol, 150 p.Google Scholar
Miller, S. A. 1889. North American Geology and Palaeontology. Western Methodist Book Concern, Cincinnati, Ohio, 664 p.Google Scholar
Miller, S. A. 1890. The structure, classification, and arrangement of American Palaeozoic crinoids into families. American Geologist, 6:275286, 340–357.Google Scholar
Miller, S. A., and Gurley, W. F. E. 1894. New genera and species of Echinodermata. Illinois State Museum of Natural History Bulletin, 5:553.Google Scholar
Moore, R. C., and Laudon, L. R. 1943. Evolution and classification of Paleozoic crinoids. Geological Society of America Special Paper, 46, 167 p.Google Scholar
Ramsbottom, W. H. C. 1961. A monograph on British Ordovician Crinoidea. Palaeontographical Society, London, monograph, 114(492):137.Google Scholar
Slocom, A. W. 1924. New echinoderms from the Maquoketa Beds of Fayette County, Iowa, Pt. 1. Iowa Geological Survey, 29 (annual reports for 1919 and 1920):320344.Google Scholar
Smith, A. B., and Paul, C. R. C. 1982. Revision of the class Cyclocystoidea (Echinodermata). Philosophical Transactions of the Royal Society of London, B. Biological Sciences, 296:577684.Google Scholar
Springer, F. 1911. On a Trenton Echinoderm Fauna at Kirkfield, Ontario. Canada Geological Survey Memoir, 15-P, 50 p.Google Scholar
Sprinkle, J. 1982. Large-calyx cladid inadunates, p. 145169. In Sprinkle, J. (ed.), Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions, Monograph 1.Google Scholar
Thomas, A. O., and Ladd, H. S. 1926. Additional cystoids and crinoids from the Maquoketa Shale of Iowa. University of Iowa Studies in Natural History, 11:518.Google Scholar
Ubaghs, G. 1978. Skeletal morphology of fossil crinoids, p. T58T216. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology. Pt. T. Echinodermata 2. The Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Walcott, C. D. 1884. Descriptions of New Species of Fossils from the Trenton Group of New York. Thirty-Fifth Annual Report of the New York State Museum of Natural History, p. 207214 (advanced print, 15 October 1883, p. 1–8).Google Scholar
Warn, J. M., and Strimple, H. L. 1977. The disparid inadunate superfamilies Homocrinacea and Cincinnaticrinacea (Echinodermata: Crinoidea), Ordovician-Silurian, North America. Bulletins of American Paleontology, 72:1138.Google Scholar
Webby, B. D., Cooper, R. A., Bergstrom, S. M., and Paris, F. 2004. Stratigraphic framework and time slices, p. 4147. In Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G. (eds.), The Great Ordovician Biodiversification Event. Columbia University Press, New York.CrossRefGoogle Scholar
Webster, G. 2005. Bibliography and Index of Paleozoic Crinoids, Coronates, and Hemistreptocrinoids 1758–1999. Geological Society of America, Special Paper 363, online computer access (http://crinoid.gsajournals.org/crinoidmod).Google Scholar
Witzke, B. J., and Bunker, B. J. 1996. Relative sea-level changes during Middle Ordovician through Mississippian deposition in the Iowa area, North American craton, p. 307330. In Witzke, B. J., Ludvigson, G. A., and Day, J. (eds.), Paleozoic Sequence Stratigraphy: Views from the North American Craton. Geological Society of America Special Paper, 306.Google Scholar
Zittel, K. A. Von. 1879. Handbuch der Palaeontologie, Band 1, Palaezoologie, Abt. 1. R. Oldenbourg, Munich, 765 p.Google Scholar