Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T12:40:01.025Z Has data issue: false hasContentIssue false

Tuzoia: Morphology and lifestyle of a large bivalved arthropod of the Cambrian seas

Published online by Cambridge University Press:  14 July 2015

Jean Vannier
Affiliation:
UMR 5125 Paléoenvironnements et Paléobiosphère, Université Claude Bernard Lyon 1, Campus Universitaire de la Doua, 2, rue Raphaël Dubois, 69622 Villeurbanne, France,
Jean-Bernard Caron
Affiliation:
Royal Ontario Museum, Department of Natural History, Paleobiology, 100 Queen's Park, Toronto, Ontario M5S 2C6, Canada
Jin-Liang Yuan
Affiliation:
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Science, 39 East Beijing Road, Nanjing 210008
Derek E. G. Briggs
Affiliation:
Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, Connecticut 06520-8109, USA
Desmond Collins
Affiliation:
26 Belvedere Blvd., Toronto, Ontario, M8X 1K1, Canada
Yuan-Long Zhao
Affiliation:
Department of Resource Engineering, Guizhou University of Technology, Guiyang 550003, China
Mao-Yan Zhu
Affiliation:
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Science, 39 East Beijing Road, Nanjing 210008

Abstract

The morphology of Tuzoia is reinterpreted in the light of abundant new specimens from the Middle Cambrian Burgess Shale (British Columbia, Canada) and Kaili (Guizhou, China) Lagerstätten. Tuzoia was a very large (up to 180 mm long) bivalved arthropod with a nonmineralized domelike carapace strengthened by prominent pointed features and often flanked by a lateral ridge bearing a spiny frill. The reticulate pattern of Tuzoia is comparable with that of present-day crustaceans (e.g., myodocope ostracods) and is interpreted as a structural compromise between exoskeletal lightness and high resistance to mechanical stress. Tuzoia had a pair of large, stalked, spherical, possibly compound eyes facing forward. Flagella-like antennae protruded through the anterior notch. No other appendages are known except possible filamentous setae underlying the carapace. Tuzoia typically occurs as laterally (lc) or dorsoventrally (dvc) compacted carapaces or single valves. Each type (lc or dvc) emphasizes particular aspects of the morphology (e.g., spiny lateral ridge, ventral margin) that were often interpreted as specific differences by previous authors. A revision of Tuzoia validates only 7 of the 23 named species. Tuzoia is placed tentatively within a group of large bivalved arthropods along with Isoxys and the possible ancestors of Thylacocephala (Lower Cambrian–Upper Cretaceous). In the Middle Cambrian, Tuzoia occurs across Laurentia, South and North China, and the Perigondwanan area (Bohemia) within a relatively narrow subtropical belt, indicating a high dispersal capability and possible latitudinal control on its distribution. Functional morphology, taphonomy, and the distributional pattern indicate that Tuzoia was a free-swimming arthropod.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K. 1983. Population structure of Keijella bisanensis (Okubo) (Ostracoda, Crustacea): An inquiry into how far the population structure will be preserved in the fossil record. Journal of the Faculty of Science, University of Tokyo, 20:443488.Google Scholar
Aldridge, R. J., Hou, X.-G., Siveter, David J., Siveter, Derek J., and Gabbot, S. E. 2007. The systematics and phylogenetic relationships of vetulicolians. Palaeontology, 50:131168.CrossRefGoogle Scholar
Alvaro, J. J., Elicki, O., Geyer, G., Rushton, A. W. A., and Shergold, J. H. 2003. Palaeogeographical controls on the Cambrian trilobite immigration and evolutionary patterns reported in the western Gondwana margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 195:535.CrossRefGoogle Scholar
Angel, M. 1968. Bioluminescence in planktonic halocyprid ostracods. Journal of the Marine Biological Association of the United Kingdom, 48:255257.CrossRefGoogle Scholar
Angel, M. 1993. Marine planktonic ostracods. Synopses of the British Fauna (new series), 48:1240.Google Scholar
Bengtson, S., Matthews, S. C., and Missarzhevsky, V. V. 1981. Stratigraphy and fauna of the Precambrian-Cambrian boundary beds of Malyj Karatau. Trudy Geologicheskogo Instituta ANSSSR, 326:190.Google Scholar
Benson, R. H. 1975. Morphological stability in Ostracoda, p. 1446. In Swain, F. M., Kornicker, L., and Lundin, R. F. (eds.), Biology and Paleobiology of Ostracoda. Paleontological Research Institution, Ithaca, New York.Google Scholar
Bergström, J., and Hou, X.-G. 2003. Cambrian arthropods: A lesson in convergent evolution, p. 8996. In Legakis, A., Sfenthourakis, S., Polymeni, R., and Thessalou-Legaki, M. (eds.), The New Panorama of Animal Evolution. Proceedings of the 18th International Congress of Geology, Athens, Greece.Google Scholar
Brady, G. S. 1880. Report on the scientific results of the voyage of H. M. S. Challenger during the years 1873–1876, Zoology, 1(3):1184.Google Scholar
Briggs, D. E. G. 1977. Bivalved arthropods from the Cambrian Burgess Shale of British Columbia. Palaeontology, 22:631664.Google Scholar
Briggs, D. E. G. 1978. The morphology, mode of life, and affinities of Canadaspis perfecta (Crustacea: Phyllocarida), Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London B, 281:439487.Google Scholar
Briggs, D. E. G. 1979. Anomalocaris, the largest known Cambrian arthropod. Palaeontology, 22:631664.Google Scholar
Briggs, D. E. G., and Robison, R. A. 1984. Exceptionally preserved nontrilobite arthropods and Anomalocaris from the Middle Cambrian of Utah. The University of Kansas Paleontological Contributions, 111:123.Google Scholar
Briggs, D. E. G., and Whittington, H. B. 1987. The affinities of the Cambrian animals Anomalocaris and Opabinia. Lethaia, 20:185186.CrossRefGoogle Scholar
Briggs, D. E. G., and Williams, S. H. 1981. The restoration of flattened fossils. Lethaia, 14:157164.CrossRefGoogle Scholar
Briggs, D. E. G., Erwin, D. H., and Collier, F. J. 1994. The fossils of the Burgess Shale. Smithsonian Institution Press, Washington, DC, 238 p.Google Scholar
Briggs, D. E. G., Lieberman, B. S., Halgedahl, S. L., and Jarrard, R. D. 2005. A new metazoan from the Middle Cambrian of Utah and the nature of the Vetulicolia. Palaeontology, 48:681686.CrossRefGoogle Scholar
Butterfield, N. J. 2002. Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology, 28:155171.2.0.CO;2>CrossRefGoogle Scholar
Campbell, L., and Kauffman, M. E. 1969. Olenellus fauna of the Kinzers Formation, southeastern Pennsylvania. Proceedings of the Pennsylvania Academy of Science, 43:172176.Google Scholar
Cannon, H. G. 1960. Leptostraca, p. 181. In Bronns, H. G. (ed.), Klassen und Ordnungen des Tierreichs, Volume 5, sect. 1. Akademische Verlagsgesellschaft Geest und Portig, Leipzig.Google Scholar
Caron, J. B. 2005. Taphonomy and community analysis of the Middle Cambrian Greater Phyllopod Bed, Burgess Shale. Unpublished Ph.D. dissertation, University of Toronto, Toronto, 316 p.Google Scholar
Caron, J. B. 2006. Banffia constricta, a putative vetulicolid from the Middle Cambrian Burgess Shale. Transactions of the Royal Society of Edinburgh: Earth Sciences, 96:95111.CrossRefGoogle Scholar
Caron, J. B., and Jackson, D. A., 2006. Taphonomy of the Greater Phyllopod Bed Community, Burgess Shale. Palaios, 21(5):451465.CrossRefGoogle Scholar
Chen, J.-Y., Ramsköld, L., and Zhou, G.-Q. 1994. Evidence for monophyly and arthropod affinity of Cambrian giant predators. Science, 264:13041308.CrossRefGoogle ScholarPubMed
Chlupáč, I., and Kordule, V. 2002. Arthropods of Burgess Shale type from the Middle Cambrian of Bohemia (Czech Republic). Bulletin of the Czech Geological Survey, 77:167182.Google Scholar
Collins, D. 1996. The “evolution” of Anomalocaris and its classification in the arthropod class Dinocarida (nov.) and order Radiodonta (nov.). Journal of Paleontology, 70:280293.CrossRefGoogle Scholar
Collins, D., and Stewart, W. D. 1991. The Burgess Shale and its environmental setting, Fossil Ridge, Yoho National Park, p. 105117. In Smith, P. L. (ed.), A Field Guide to the Palaeontology of Southwestern Canada. University of British Columbia, Victoria.Google Scholar
Collins, D., Briggs, D. E. G., and Conway Morris, S. 1983. New Burgess Shale fossil sites reveal Middle Cambrian faunal complex. Science, 222:163167.CrossRefGoogle ScholarPubMed
Conway Morris, S. 1986. The community structure of the Middle Cambrian phyllopod bed (Burgess Shale). Palaeontology, 29:423467.Google Scholar
Delle Cave, L., and Simonetta, A. M. 1991. Early Palaeozoic arthropods and problems of arthropod phylogeny; with some notes on taxa of doubtful affinities, p. 189244. In Simonetta, A. M. and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Proceedings of an International Symposium held at the University of Camerino 27–31 March 1989. Volume 1. Cambridge University Press.Google Scholar
Emlet, R. B., and Strathman, R. R. 1985. Gravity, drag, and feeding currents in small zooplankton. Science, 228:10016–1017.CrossRefGoogle ScholarPubMed
Endo, R., and Resser, C. E. 1937. The Sinian and Cambrian formations and fossils of southern Manchoukuo. Bulletin of the Manchurian Science Museum, 1:1406.Google Scholar
Fletcher, T. P., and Collins, D. 1998. The Middle Cambrian Burgess Shale and its relationship to the Stephen Formation in the southern Canadian Rocky Mountains. Canadian Journal of Earth Sciences, 35:413436.CrossRefGoogle Scholar
Fletcher, T. P., and Collins, D. 2004. The Burgess Shale and associated Cambrian formations west of the Fossil Gully Fault Zone on Mount Stephen, British Columbia. Canadian Journal of Earth Sciences, 40:18231838.CrossRefGoogle Scholar
Glaessner, M. F. 1979. Lower Cambrian Crustacea and annelid worms from Kangaroo Island, South Australia. Alcheringa, 3:2131.CrossRefGoogle Scholar
Henriksen, K. L. 1928. Critical notes upon some Cambrian arthropods described by Charles D. Walcott. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening København, 86:120.Google Scholar
Hou, X.-G. 1987. Early Cambrian large bivalve arthropods from Chengjiang, Eastern Yunnan. Acta Palaeontologica Sinica, 26:286298.Google Scholar
Hou, X.-G., and Bergström, J. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45:1116.Google Scholar
Hou, X.-G., Chen, J.-Y., and Lu, H.-Z. 1989. Early Cambrian new arthropods from Chengjiang, Yunnan. Palaeontologica Sinica, 28:4257. (In Chinese with English abstract)Google Scholar
Hou, X.-G., Aldridge, R. J., Bergström, I., Siveter, David J., Siveter, Derek J., and Feng, X.-H. 2004. The Cambrian Fossils of Chengjiang, China. Blackwell Publishing, Malden, Massachusetts, 233 p.Google Scholar
Huang, D.-Y. 2005. Early Cambrian worms from SW China: Morphology, systematics, lifestyles and evolutionary significance. Ph.D. dissertation, Université Claude Bernard, Lyon 1, 247 p.Google Scholar
Irizuki, T. 1994. Quantitative analysis of ontogenetic changes of cell-reflecting sculptures in Ostracoda (Crustacea). Journal of Paleontology, 68:10671073.CrossRefGoogle Scholar
Knight, C. R. 1942. Parade of life through the ages. National Geographic Magazine, 81:141184.Google Scholar
Jiang, Z.-W. 1982. Small shelly fossils, p. 163199. In Huo, H.-L., Jiang, Z.-W., Wu, X.-C., Song, X.-L., and Lin, O.-Y. (eds.), The Sinian-Cambrian Boundary in Eastern Yunnan China. People's Publishing House of Yunnan, Kunming. (In Chinese)Google Scholar
Lieberman, B. S. 2003. A new soft-bodied fauna: The Pioche Formation of Nevada. Journal of Paleontology, 77:674690.2.0.CO;2>CrossRefGoogle Scholar
Luo, H.-L., Hu, S.-X., Chen, L.-Z., Zhang, S.-S., and Tao, Y.-H. 1999. Early Cambrian Chengjiang Fauna from Kunming Region, China. Yunnan Science and Technology Press, Kunming, 162 p.Google Scholar
Matthew, G. F. 1899. Studies on Cambrian faunas, no. 3: Upper Cambrian fauna of Mt. Stephen, British Columbia. Transactions of the Royal Society of Canada, Series 2, 5:3966.Google Scholar
Meek, F. B. 1877. Paleontology. United States Geological Exploration of the 40th Parallel, 4(2), 197 p.Google Scholar
Müller, G. W. 1894. Die Ostracoden des Golfes von Neapel und den angrenzenden Meeres-Abschnitte. Fauna und Flora des Golfes von Neapel und den angrenzenden Meeres-Abschnitte, Herausgegeben von der Zoologischen Station zu Neapel, 21:1104.Google Scholar
Okada, Y. 1981. Development of cell arrangment in ostracode carapace. Paleobiology, 7:276280.CrossRefGoogle Scholar
Okada, Y. 1982a. Structure and cuticle formation of the reticulated carapace of the ostracode Bicornucythere bisanensis. Lethaia, 15:85101.CrossRefGoogle Scholar
Okada, Y. 1982b. Ultrastructure and pattern of the carapace of Bicornucythere bisanensis (Ostracoda, Crustacea). University Museum, University of Tokyo Bulletin, 20:229255.Google Scholar
Okubo, Y. 1975. Recent marine Ostracoda of the Inland Sea, Japan. 1: Callistocythere pumila Hanai, 1957, and Leguminocythereis bissanensis sp. nov. in the Inland Sea, Japan (Ostracoda). Proceedings of the Japanese Society of Systematic Zoology, 11:2331.Google Scholar
Orlov, Y. A. 1960. Principles of Paleontology: Arthropoda, Trilobitomorpha and Crustacea. Nedra, Moscow, 515 p. (In Russian)Google Scholar
Pan, K. 1957. On the discovery of Homopoda from South China. Palaeontologica Sinica, 5:523526. (In Chinese with English abstract)Google Scholar
Parker, A. R. 2003. In the Blink of an Eye. Free Press, London, 316 p.Google Scholar
Raymond, P. E. 1935. Leanchoilia and other Mid-Cambrian Arthropoda. Bulletin of the Museum of Comparative Zoology, Harvard University, 76:205230.Google Scholar
Resser, C. E. 1929. New Lower and Middle Cambrian Crustacea. Proceedings of the U.S. National Museum, 76:118.CrossRefGoogle Scholar
Resser, C. E., and Howell, B. F. 1938. Lower Cambrian Olenellus Zone of the Appalachians. Geological Society of America Bulletin, 49:195248.CrossRefGoogle Scholar
Rigby, J. K., and Collins, D. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science, 1:1155.Google Scholar
Robison, R. A. 1991. Middle Cambrian biotic diversity: Examples from four Utah Lagerstätten, p. 1924. In Simonetta, A. M. and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Proceedings of an International Symposium Held at the University of Camerino 27–31 March 1989. Volume 1. Cambridge University Press.Google Scholar
Robison, R. A., and Richards, B. C. 1981. Larger bivalve arthropods from the Middle Cambrian of Utah. Paleontological Contributions of the University of Kansas, 106:119.Google Scholar
Rolfe, W. D. I. 1962. Two new arthropod carapaces from the Burgess Shale (Middle Cambrian) of Canada. Breviora, 160:19.Google Scholar
Rolfe, W. D. I. 1969. Phyllocarida, p. T295T331. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. R, Arthropoda 4 (1). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Sars, G. O. 1887. Report on the Phyllocarida collected by H. M. S. “Challenger” during the years 1873–1876. Reports of the Voyage of Challenger, 19:138.Google Scholar
Schram, F. R. 1986. Crustacea. Oxford University Press, New York, 595 p.Google Scholar
Schram, F. R., Hof, C. H. J., and Steeman, F. A. 1999. Thylacocephala (Arthropoda: Crustacea?) from the Cretaceous of Lebanon and implications for thylacocephalan systematics. Palaeontology, 42:769797.CrossRefGoogle Scholar
Scott, H. V. 1961. Shell morphology of Ostracoda, p. Q21Q43. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. Q, Arthropoda 3. Crustacea, Ostracoda. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Shan, W.-G. 1996. Substitute Hongjingshao Formation, and Wulongqing Formation for Lower Cambrian Canglangpu Fm. of Eastern Yunnan. Journal of Stratigraphy, 20:224231. (In Chinese)Google Scholar
Shu, D.-G. 1990. Cambrian and Lower Ordovician Bradoriida from Zhejiang, Hunan and Shaanxi Provinces. Northwest University Press, Xian, 95 p.Google Scholar
Shu, D.-G., Vannier, J., Luo, H.-L., Chen, L., Zhang, X.-L., and Hu, S.-X. 1999. The anatomy and lifestyle of Kunmingella (Arthropoda, Bradoriida) from the Chengjiang fossil Lagerstätte (early Cambrian; southern China). Lethaia, 42:279298.CrossRefGoogle Scholar
Shu, D.-G., Conway Morris, S., Han, J., Chen, L., Zhang., X.-L, Zhang, Z.-F, Liu, H.-Q., Li, Y., and Liu, J.-N. 2001. Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China). Nature, 414:419424.CrossRefGoogle ScholarPubMed
Simonetta, A. M., and Delle Cave, L. 1975. The Cambrian nontrilobite arthropods from the Burgess Shale of British Columbia. A study of their comparative morphology, taxonomy and evolutionary significance. Palaeontographia Italica, 69:137.Google Scholar
Simonetta, A. M., and Delle Cave, L. 1991. Early Palaeozoic arthropods and problems of arthropod phylogeny; with some notes on taxa of doubtful affinities, p. 189244. In Simonetta, A. M. and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Proceedings of an International Symposium held at the University of Camerino 27–31 March 1989. Volume 1. Cambridge University Press.Google Scholar
Vannier, J., and Chen, J.-Y. 2000. The Early Cambrian colonization of pelagic niches exemplified by Isoxys. Lethaia, 33:295311.CrossRefGoogle Scholar
Vannier, J., and Chen, J.-Y. 2002. Digestive system and feeding mode in Cambrian naraoiid arthropods. Lethaia, 35:107120.CrossRefGoogle Scholar
Vannier, J., and Chen, J.-Y. 2005. Early Cambrian food chain: New evidence from fossil aggregates in the Maotianshan Shale biota, SW China. Palaios, 20:326.CrossRefGoogle Scholar
Vannier, J., Boissy, P., and Racheboeuf, P. 1997. Locomotion in Nebalia bipes: A possible model for Palaeozoic phyllocarid crustaceans. Lethaia, 30:89104.CrossRefGoogle Scholar
Vannier, J., Chen, J.-Y., Huang, D.-Y., and Wang, X.-Q. 2006. Thylacocephalan arthropods: Their early Cambrian origin and evolutionary significance. Acta Paleontologica Polonica, 51:201214.Google Scholar
Vannier, J., Racheboeuf, P. R., Brussa, E., Williams, M., Rushton, A. W. A., Servais, T., and Siveter, D. J. 2003. Cosmopolitan arthropod zooplankton in the Ordovician seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 79:119.Google Scholar
Walcott, C. D. 1890. The fauna of the Lower Cambrian or Olenellus Zone. Reports of the U.S. Geological Survey, 10:509763.Google Scholar
Walcott, C. D. 1911. Middle Cambrian annelids. Cambrian Geology and Paleontology II. Smithsonian Miscellaneous Collections, 57:109144.Google Scholar
Walcott, C. D. 1912. Cambrian geology and paleontology II: Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithsonian Miscellaneous Collections, 57:145228.Google Scholar
Walcott, C. D. 1916. Cambrian trilobites. Cambrian Geology and Paleontology III. Smithsonian Miscellaneous Collections, 64:303456.Google Scholar
Whiteaves, J. F. 1892. Description of a new genus and species of phyllocarid crustacea from the Middle Cambrian of Mount Stephen, BC. Canadian Record of Science, 5:205208.Google Scholar
Whittington, H. B., and Briggs, D. E. G. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London, series B, 309:569609.Google Scholar
Williams, M., Siveter, D. J., and Peel, J. S. 1996. Isoxys (Arthropoda) from the Early Cambrian Sirius Passet Lagerstätte, North Greenland. Journal of Paleontology, 70:947954.CrossRefGoogle Scholar
Yang, R.-D., Zhang, Z.-Y, and Zhao, Y.-L. 1999. Taphonomic and palaeoecological analysis of the Middle Cambrian Kaili Lagerstätte in Taijiang, Guizhou. Acta Palaeontologica Sinica 38, supplement:95101. (In Chinese with English abstract)Google Scholar
Yuan, J.-L., and Zhao, Y.-L. 1999. Tuzoia (bivalved arthropods) from the Lower-Middle Cambrian Kaili Formation of Taijiang, Guizhou. Palaeontologica Sinica 38, supplement:8893. (In Chinese with English abstract)Google Scholar
Zhao, Y.-L., Yuan, J.-L., Zhu, M.-Y., Yang, R.-D., Guo, Q.-J., Qian, Y., Huang, Y.-Z., and Pan, Y. 1999. Progress report on research on the Early Middle Cambrian Kaili biota. Acta Palaeontologica Sinica 38, Supplement:114. (In Chinese with English abstract)Google Scholar
Zhao, Y.-L., Yuan, J.-L., Zhu, M.-Y., Yang, R.-D., Guo, Q.-J., Peng, J., and Yang, X.-L. 2002. Progress and significance in research on the early Middle Cambrian Kaili Biota, Guizhou Province, China. Progress in Natural Science, 12:649654.Google Scholar
Zhu, M.-Y., Erdtmann, B.-D., and Zhao, Y.-L. 1999. Taphonomy and paleoecology of the Early Middle Cambrian Kaili Lagerstätte in Guizhou, China. Acta Palaeontologica Sinica 38, supplement:2857. (In Chinese with English abstract)Google Scholar
Zhu, M.-Y., Zhao, Y.-L., and Chen, J.-Y. 2002. Revision of the Cambrian discoidal animals Stellostomites eumorphus and Pararotadiscus guizhouensis from South China. Geobios, 35:165185.CrossRefGoogle Scholar
Zhu, M.-Y., Vannier, J., Van Iten, H., and Zhao, Y.-L. 2004. Direct evidence for predation on trilobites in the Cambrian. Proceedings of the Royal Society of London, Biological Letters, 271:277280.Google ScholarPubMed