Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T04:06:56.288Z Has data issue: false hasContentIssue false

Tubular compression fossils from the Ediacaran Nama group, Namibia

Published online by Cambridge University Press:  20 May 2016

P. A. Cohen
Affiliation:
Department of Earth and Planetary Sciences, Harvard University, Cambridge MA 02138, ,
A. Bradley
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA 02138, ,
A. H. Knoll
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA 02138, ,
J. P. Grotzinger
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena 91125, ,
S. Jensen
Affiliation:
Área de Paleontología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain,
J. Abelson
Affiliation:
Division of Biology, California Institute of Technology, 1200 E. California Blvd, Pasadena 91125,
K. Hand
Affiliation:
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena 91109,
G. Love
Affiliation:
Department of Earth Sciences, University of California, Riverside 92521,
J. Metz
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena 91125, ,
N. McLoughlin
Affiliation:
Centre for Geobiology, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway,
P. Meister
Affiliation:
Max-Planck-Institute for Marine Microbiology Celsiusstrasse 1, 28359 Bremen, Germany,
R. Shepard
Affiliation:
Department of Geology, University of California Davis, One Shields Avenue 95616–8605,
M. Tice
Affiliation:
Department of Geology and Geophysiscs, Texas A&M, College Station, 77843,
J. P. Wilson
Affiliation:
Department of Earth and Planetary Sciences, Harvard University, Cambridge MA 02138, ,

Abstract

Abundant tubular macrofossils occur in finely laminated siltstones and shales of the 548–542 Ma Schwarzrand Subgroup, Nama Group, Namibia. The Nama tubes occur in both the Vingerbreek and Feldschuhhorn members commonly in dense populations and always in fine-grained, lower shore-face lithologies deposited below fair-weather wave base. The tubes are preserved mostly as compressed casts and molds that range in width from 0.6 to 2.1 mm; apparently incomplete specimens reach lengths up to 10 cm. All specimens show sinuous bending and occasional brittle fracture, indicating an original construction of strong but flexible organic matter. Feldschuhhorn specimens preserve fine longitudinal pleats or folds that record pliant organic walls, but the older Vingerbreek populations do not. Similarly, some specimens in the Feldschuhhorn Member display branching, while Vingerbreek tubes do not. The abundant Feldschuhhorn tubes are assigned to the widespread Ediacaran problematicum Vendotaenia antiqua; however, the distinctive Vingerbreek population remains in open nomenclature. The most abundant fossils in Nama rocks, these tubes resemble populations in Ediacaran successions from Russia, China, Spain, and elsewhere. Beyond their local importance, then, such tubes may turn out to be the most abundant record of Ediacaran life.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anbar, A. D. and Knoll, A. H. 2002. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science, 297:11371142.CrossRefGoogle ScholarPubMed
Babcock, L. E., Grunow, A. M., Sadowski, G. R., and Leslie, S. A. 2005. Corumbella, an Ediacaran-grade organism from the late Neoproterozoic of Brazil. Palaeogeography, Palaeogeography, Palaeoecology, 220:718.CrossRefGoogle Scholar
Bradley, A. S. 1998. A New Vendian Body Fossil from the Nama Group of Namibia: Evolutionary and Biostratigraphic Implications. Unpublished B.A. thesis, Harvard College, 60 p.Google Scholar
Brock, F., Parkes, R. J., and Briggs, D. E. G. 2006. Experimental pyrite formation associated with decay of plant material. Palaios, 21:499506.CrossRefGoogle Scholar
Butterfield, N. J. 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26:386404.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J. 2003. Exceptional fossil preservation and the Cambrian explosion. Integrative and Comparative Biology, 43:166177.CrossRefGoogle ScholarPubMed
Canfield, D. E. and Teske, A. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382:127132.CrossRefGoogle ScholarPubMed
Canfield, D. E., Poulton, S. W., and Narbonne, G. M. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315:9295.CrossRefGoogle ScholarPubMed
Canfield, D. E., Poulton, S. W., Knoll, A. H., Narbonne, G. M., Ross, G., Goldberg, T., and Strauss, H. 2008. Ferruginous conditions dominated later Neoproterozoic deep water chemistry. Science, 321:949952.CrossRefGoogle ScholarPubMed
Chizhov, A. O., Dell, A., Morris, H. R., Haslam, S. M., Mcdowell, R. A., and Shashkov, A. S. 1999. A study of fucoidan from the brown seaweed Chorda filum. Carbohydrate Research, 320:108119.CrossRefGoogle ScholarPubMed
Contreras Sánchez, M., Martí Mus, M., and Jensen, S. R. 2007. Filamentous carbonaceous compressions from the terminal Ediacaran–Cambrian of central Spain. Palaeontological Association Newsletter, 66, p. 68.Google Scholar
Contreras Sánchez, M. M., Jensen, S. R., and Palacios, T. 2006. Sabelidítidos y vendoténidos del Anticlinal de Ibor (Zona Centroibérica). XXII Jornadas de la Sociedad Española de Paleontología. Libro de Resúmenes, 101103.Google Scholar
Dong, L., Xiao, S., Shen, B., Yuan, X., Yan, X., and Peng, Y. 2008. Restudy of the worm-like carbonaceous compression fossils Protoarenicola, Pararenicola, and Sinosabellidites from early Neoproterozoic successions in North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 138161.CrossRefGoogle Scholar
Droser, M. L., Gehling, J. G., and Jensen, S. R. 2005. Ediacaran trace fossils: true and false. In Briggs, D. E. (ed.), Evolving Form and Function: Fossils and Development. Peabody Museum of Natural History, New Haven, pp. 125138.Google Scholar
Eberl, D. D. 1984. Clay mineral formation and transformation in rocks and soils; clay minerals eir structure, behaviour and use. Philosophical Transactions of the Royal Society, London, Series A: Mathematical and Physical Sciences, 311:241257.Google Scholar
Fike, D. A., Grotzinger, J. P., Pratt, L. M., and Summons, R. E. 2006. Oxidation of the Ediacaran ocean. Nature, 444:744747.CrossRefGoogle ScholarPubMed
Germs, G. J. B. 1972. New shelly fossils from Nama group, South West Africa. American Journal of Science, 272:752761.CrossRefGoogle Scholar
Germs, G. J. B., Knoll, A. H., and Vidal, G. 1986. Latest Proterozoic microfossils from the Nama Group, Namibia (South West Africa). Precambrian Research, 32:4562.CrossRefGoogle Scholar
Gnilovskaya, M. B. 1971. The oldest aquatic plants of the Vendian of the Russian Platform (late Precambrian). Paleontological Journal, 5:372378.Google Scholar
Gnilovskaya, M. B. 1983. Vendotaenides. In Urbanek, A. and Rozanov, A. Yu. (eds.), Upper Precambrian and Cambrian Paleontology of the East European Platform. Publishing House Wydawnictwa Geologiczne: Warsaw, Poland, p. 4656.Google Scholar
Gnilovskaya, M. B. 1990. Vendotaenids; Vendian metaphytes. In Sokolov, B. S. & Iwanowski, A. B. (eds.), The Vendian System. Volume 1. Paleontology. Springer-Verlag: New York, NY, p. 138147.Google Scholar
Gnilovskaya, M. B., Istchenko, A. A., Kolshnikov, Ch. M., KoRenchuk, L. V., and Udalstov, A. P. 1988. Vendotaenids of the East European Platform. Leningrad: Nauka, 143 p.Google Scholar
Graham, L. E. and Wilcox, L. E. 1999. Algae. Upper Saddler River, NJ: Prentice Hall, 604 p.Google Scholar
Grant, S. W. F. 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic; Proterozoic evolution and environments. American Journal of Science, 290-A:261294.Google Scholar
Grazhdankin, D. and Nagovitsin, K. 2007. Late Vendian Miaohe–type ecological assemblage of the East European Platform. Doklady Earth Sciences, 417:11831187.CrossRefGoogle Scholar
Gresse, P. G. and Germs, G. J. B. 1993. The Nama foreland basin; sedimentation, major unconformity bounded sequences and multisided active margin advance. Precambrian Research, 63:247272.CrossRefGoogle Scholar
Grotzinger, J. P. 2002. Stratigraphy, facies, and paleoenvironmental setting of a terminal Proterozoic carbonate ramp, Nama Group (ca. 550–543 Ma), Namibia: Johannesburg, South Africa, 16th International Sedimentological Congress, Field Guide, 71 p.Google Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270:598604.CrossRefGoogle Scholar
Grotzinger, J. P., Watters, W. A., and Knoll, A. H. 2000. Calcified metazoans in thrombolite–stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26:334359.2.0.CO;2>CrossRefGoogle Scholar
Grotzinger, J. P. and Miller, R. McG. 2008. Nama Group. In Miller, R. McG. (ed.), The Geology of Namibia, Volume 2, Geological Survey of Namibia, p. 13.22913.272.Google Scholar
Herman, T. N. and Podkovyrov, V. N. 2005. On the animal nature of the late Riphean Rugosoopsis. Paleontological Journal, 39:582589.Google Scholar
Hofmann, H. J. 1992. Proterozoic and selected Cambrian mega-scopic dubiofossils and pseudofossils. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic biosphere: A multidisciplinary study. Cambridge University Press, Cambridge, p. 10351053.Google Scholar
Hofmann, H. J. 1994. Proterozoic carbonaceous compressions (“metaphytes” and “worms”). In Bengston, S. (ed.), Early Life on Earth. Columbia University Press, New York, pp. 342357.Google Scholar
Hou, X.-G., Aldridge, R. J., Bergstrom, J., Siveter, D. L., Siveter, D. J., and Feng, X.-H. 2004. The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life. Blackwell Publishing, Malden Massachusetts, 233 p.Google Scholar
Hua, H., Chen, Z., and Yuan, X. 2007. The advent of mineralized skeletons in Neoproterozoic metazoa; new fossil evidence from the Gaojiashan fauna. Geological Journal, 42:263279.Google Scholar
Ivantsov, A. Y. 1990. New data on the ultrastructure of sabellidites (Pogonophora?). Paleontologicheskii Zhurnal, 24:125128.Google Scholar
Jensen, S., Droser, M. L., and Gehling, J. G. 2005a. Trace fossil preservation and the early evolution of animals. Palaeogeography, Palaeoclimatology, Palaeocology, 220:1929.CrossRefGoogle Scholar
Jensen, S., Palacios, T., and Marti Mus, M. 2005b. Megascopic filamentous organisms preserved as grooves and ridges in Ediacaran siliciclastics. Paleobios, 25, Suppl. to No. 2, 6566.Google Scholar
Jensen, S., Droser, M. L., and Gehling, J. G. 2006. A critical look at the Ediacaran trace fossil record. In Xiao, S. & Kaufman, A. J. (eds.), Neoproterozoic Geobiology and Paleobiology, p. 115157. Springer.CrossRefGoogle Scholar
Jensen, S., Palacios, T., and Marti Mus, M. 2007. A brief review of the fossil record of the Ediacaran–Cambrian transition in the area of Montes de Toledo–Guadalupe, Spain. In Vickers-Rich, P. (ed.), The rise and fall of the Ediacaran biota. Geological Society of London Special Publication, 286: 223235.CrossRefGoogle Scholar
Knoll, A. H., Javaux, E. J., Hewitt, D., and Cohen, P. 2006. Eukaryotic organisms in Proterozoic oceans, Philosophical Transactions of the Royal Society, London. Biological Sciences, 361:10231038.CrossRefGoogle Scholar
Knoll, A. H., Summons, R. E., Waldbauer, J., and Zumberge, J. 2007. The geological succession of primary producers in the oceans. In Falkowski, P. and Knoll, A. H. (eds.), The Evolution of Primary Producers in the Sea. Burlington, Elsevier, p. 133163.CrossRefGoogle Scholar
Korkutis, V. 1981. Late Precambrian and Early Cambrian in the East European Platform. Precambrian Research, 15:7594.CrossRefGoogle Scholar
Liu, R., Xiao, S., Yin, C., Zhou, C., Gao, L., and Tang, F. 2008. Systematic description and phylogenetic affinity of tubular microfossils from the Ediacaran Doushantuo Formation at Weng'an, South China. Palaeontology, 51: 339366.CrossRefGoogle Scholar
Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia; implications for metazoan evolution. Science, 288:841845.CrossRefGoogle ScholarPubMed
Mcfadden, K. A., Huang, J., Chu, X., Jiang, G., Kaufman, A. J., Zhou, C., Yuan, X., and Xiao, S. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, USA 105:31973202.CrossRefGoogle ScholarPubMed
Moczydlowksa, M. 2003. Earliest Cambrian putative bacterial nanofossils. Memoirs of the Association of Australasian Palaeontologists, 29:111.Google Scholar
Narbonne, G. M. 2005. The Ediacaran Biota: Neoproterozoic origin of animals and their Ecosystems. Annual Review of Earth and Planetary Sciences, 33:412442.CrossRefGoogle Scholar
Orr, P. J., Benton, M. J., and Briggs, D. E. G. 2003. Post–Cambrian closure of the deep-water slope–basin taphonomic window. Geology, 31:769772.CrossRefGoogle Scholar
Raiswell, R. and Canfield, D. E. 1998. Sources of iron for pyrite formation in marine Sediments. American Journal of Science, 298:219245.CrossRefGoogle Scholar
Saylor, B. Z. 2003. Sequence stratigraphy and carbonate–siliciclastic mixing in a terminal Proterozoic foreland basin, Urusis Formation, Nama Group, Namibia. Journal of Sedimentary Research, 73:264279.CrossRefGoogle Scholar
Saylor, B. Z., Grotzinger, J. P., and Germs, G. J. B. 1995. Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and Schwarzrand subgroups (Nama Group), Southwestern Namibia; Neoproterozoic stratigraphy and earth history. Precambrian Research, 73:153171.CrossRefGoogle Scholar
Saylor, B. Z., Kaufman, A. J., Grotzinger, J. P., and Urban, F. 1998. A composite reference section for terminal Proterozoic strata of southern Namibia. Journal of Sedimentary Research, 68:12231235.CrossRefGoogle ScholarPubMed
Schulz, H. N., Brinkhoff, T., Ferdelman, T. G., Mariné, M. H., Teske, A., and Jørgensen, B. B. 1999. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science, 284:493495.CrossRefGoogle ScholarPubMed
Scott, C., Lyons, T. W., Bekker, A., Shen, Y., Poulton, S. W., Chu, X., and Anbar, A. D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452:456458.CrossRefGoogle ScholarPubMed
Shen, Y., Zhang, T., and Hoffman, P. F. 2008. On the coevolution of Ediacaran oceans and animals. Proceedings of the National Academy of Sciences, 105:73767381.CrossRefGoogle ScholarPubMed
Sokolov, B. S. 1967. The oldest Pogonophora. Doklady Akademia Nauk SSSR 177(1):201204.Google Scholar
Sokolov, B. S. 1968. Vendian and Early Cambrian Sabelliditida (Pogonophora) of the USSR. Proceedings, 23rd International Geological Congress, Prague, pp. 7996.Google Scholar
Sokolov, B. S. 1972. Vendian and Early Cambrian Sabellidita (Pogonophora) of the USSR. Proceedings of the 23rd International Geological Congress, Proceedings of the International Palaeontological Union, 7986.Google Scholar
Steiner, M. 1994. Die neoproterozoischen Megaalgen Sudchinas. Berliners Geowissenschaftliche Abhandlungen, Reihe E, Band 15,146 p.Google Scholar
Tang, F., Yin, C., Bengston, S., Liu, P., Wang, Z., and Gao, L. 2008. Octoradiate spiral organisms in the Ediacaran of South China. Acta Geological Sinica, 82:2734.Google Scholar
Vidal, G. 1989. Are late Proterozoic carbonaceous megafossils metaphytic algae or bacteria? Lethaia 22:375379.CrossRefGoogle Scholar
Wood, R. A., Grotzinger, J. P., and Dickson, J. A. D. 2002. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science, 296:23832386.CrossRefGoogle ScholarPubMed
Xiao, S. 2004. New multicellular algal fossils and acritarchs in Doushantuo chert nodules (Neoproterozoic, Yangtze Gorges, South China). Journal of Paleontology, 78:393401.2.0.CO;2>CrossRefGoogle Scholar
Xiao, S. and Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74:767788.2.0.CO;2>CrossRefGoogle Scholar
Xiao, S. and Dong, L. 2006. On the morphological and ecological history of Proterozoic macroalgae. In Xiao, S. and Kaufmann, A. J. (eds.), Neoproterozoic Geobiology and Paleobiology. Dordrecht, the Netherlands, Springer, p. 5790.CrossRefGoogle Scholar
Xiao, S., Yuan, X., Steiner, M., and Knoll, A. H. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale; a systematic reassessment of the Miaohe biota, South China. Journal of Paleontology, 76:347376.CrossRefGoogle Scholar
Yuan, X., Li, J., and Cao, R. 1999. A diverse metaphyte assemblage from the Neoproterozoic black shales of South China. Lethaia, 32:143155.Google Scholar
Zhu, M., Babcock, L. E., and Steiner, M. 2005. Fossilization modes in the Chengjiang Lagerstätte (Cambrian of China); testing the roles of organic preservation and diagenetic alteration in exceptional preservation. Palaeogeography, Palaeoclimatology, Palaeocology, 220:3146.CrossRefGoogle Scholar