Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T07:43:42.793Z Has data issue: false hasContentIssue false

Trilobite paleobiology: Past, present, and future

Published online by Cambridge University Press:  20 May 2016

Jonathan M. Adrain
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom,
Stephen R. Westrop
Affiliation:
Oklahoma Museum of Natural History and School of Geology and Geophysics, University of Oklahoma, Norman, OK 73019,

Extract

The first major international trilobite conference (which also dealt with related arthropod groups) was convened by David Bruton in Oslo in 1973. That meeting resulted in a 467 page proceedings volume (Martinsson, 1975) that has become an indispensible reference on arthropod paleobiology. With its abundance of high-quality empirical work and influential ideas, the ongoing utility of “Fossils and Strata 4” is assured, yet it is also a fascinating microcosm of the themes and concerns of paleontology as a whole a quarter of a century ago. Paleoecology blossomed in the late 1960s and early 1970s. Autecology, and particularly functional morphology, dominates the volume, accounting for about one-third of the contributions. Plate tectonics was a relatively recent development in 1973 and, following the lead of Whittington and Hughes (1972), several papers tackled trilobite paleobiogeography. They vary from a bold attempt to determine oceanic circulation through the Ordovician by Ross to more conventional studies of biogeographic distribution that were aimed at providing further support for concepts of continental drift. There was a burgeoning interest in community paleoecology, and Richard Fortey's (1975) now-classic paper on the Early Ordovician faunas of Spitsbergen was the first to define trilobite “communities.” The volume was rounded out by diverse papers on trilobite anatomy based on material from the Burgess Shale and Beecher's Trilobite Bed, the microstructure of the trilobite cuticle, trilobites eyes, high level classification of trilobites, and various evolutionary themes (character displacement in agnostoids; adaptive radiation in Cambrian trilobites).

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrain, J. M. 1998. Systematics of the Acanthoparyphinae (Trilobita), with species from the Silurian of Arctic Canada. Journal of Paleontology, 72:698718.CrossRefGoogle Scholar
Adrain, J. M., and Chatterton, B. D. E. 1994. The aulacopleurid trilobite Otarion, with new species from the Silurian of northwestern Canada. Journal of Paleontology, 68:305323.Google Scholar
Adrain, J. M., and Edgecombe, G. D. 1997. Silurian encrinurine trilobites from the central Canadian Arctic. Palaeontographica Canadiana, 14:1109.Google Scholar
Adrain, J. M., Fortey, R. A., and Westrop, S. R. 1998. Post-Cambrian trilobite diversity and evolutionary faunas. Science, 280:19221925.CrossRefGoogle ScholarPubMed
Behrensmeyer, A. K., and Kidwell, S. M. 1985. Taphonomy's contributions to paleobiology. Paleobiology, 11, 105119.Google Scholar
Chatterton, B. D. E. 1971. Taxonomy and ontogeny of Siluro-Devonian trilobites from near Yass, New South Wales. Palaeontographica Abteilung A, 137:1108.Google Scholar
Chatterton, B. D. E. 1980. Ontogenetic studies of Middle Ordovician trilobites from the Esbataottine Formation, Mackenzie Mountains, Canada. Palaeontographica Abteilung A, 171:174.Google Scholar
Chatterton, B. D. E., and Speyer, S. E. 1989. Larval ecology, life history strategies, and patterns of extinction and survivorship among Ordovician trilobites, Paleobiology, 15:118132.Google Scholar
Chatterton, B. D. E., and Speyer, S. E. 1997. Ontogeny, p. 173247. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology, Pt. O, Arthropoda 1, Trilobita Revised. University of Kansas Press, Lawrence, Kansas.Google Scholar
Chatterton, B. D. E., Siveter, D. J., Edgecombe, G. D., and Hunt, A. S. 1990. Larvae and relationships of the Calymenina (Trilobita). Journal of Paleontology, 64:255277.CrossRefGoogle Scholar
Chatterton, B. D. E., Edgecombe, G. D., Speyer, S. E., Hunt, A. S., and Fortey, R. A. 1994. Ontogeny and relationships of Trinucleoidea (Trilobita). Journal of Paleontology, 68:523540.Google Scholar
Edgecombe, G. D., and Ramsköld, L. 1996. The “Encrinurusvariolaris plexus (Trilobita, Silurian): relationships of Llandovery species. Geobios, 29:209233.CrossRefGoogle Scholar
Eldredge, N. 1972. Systematics and evolution of Phacops rana (Green, 1832) and Phacops iowensis Delo, 1935 (Trilobita) from the Middle Devonian of North America. Bulletin of the American Museum of Natural History, 147:45114.Google Scholar
Eldredge, N. 1973. Systematics of Lower and lower Middle Devonian species of the trilobite Phacops Emmrich in North America. Bulletin of the American Museum of Natural History, 151:285338.Google Scholar
Foote, M. 1991. Morphologic patterns of diversification: examples from trilobites. Palaeontology, 34:461485.Google Scholar
Foote, M. 1993. Contributions of individual taxa to overall morphological disparity. Paleobiology, 19:403419.Google Scholar
Fortey, R. A. 1975. Early Ordovician trilobite communities. Fossils and Strata, 4:331352.Google Scholar
Fortey, R. A. 1980. Generic longevity in Lower Ordovician trilobites: relation to environment. Paleobiology, 6:2431.Google Scholar
Fortey, R. A., and Chatterton, B. D. E. 1988. Classification of the trilobite suborder Asaphina. Palaeontology, 31:165222.Google Scholar
Fortey, R. A., and Owens, R. M. 1975. Proetida—a new order of trilobites. Fossils and Strata, 4:227239.Google Scholar
Fortey, R. A., and Owens, R. M. 1990. Evolutionary radiations in the Trilobita, p. 139164. In Taylor, P. D. and Larwood, G. P. (eds.), Major Evolutionary Radiations. Systematics Association Special Volume No. 42. Clarendon Press, Oxford.Google Scholar
Gould, S. J. 1980. The promise of paleobiology as a nomothetic, evolutionary discipline. Paleobiology, 6:96118.CrossRefGoogle Scholar
Hesselbo, S. P. 1987. The biostratinomy of Dikelocephalus sclerites: implications for the use of trilobite attitude data. Palaios, 2:605608.CrossRefGoogle Scholar
Hughes, N. C. 1994. Ontogeny, intraspecific variation, and systematics of the Late Cambrian trilobite Dikelocephalus. Smithsonian Contributions to Paleobiology, 79:189.Google Scholar
Hughes, N. C., and Chapman, R. E. 1995. Growth and variation in the Silurian proetide trilobite Aulacopleura konincki and its implications for trilobite palaeobiology. Lethaia, 28:333353.Google Scholar
Hughes, N. C., and Rushton, A. W. A. 1990. Computer-aided restoration of a Late Cambrian ceratopygid trilobites from Wales, and its phylogenetic implications. Palaeontology, 33:429445.Google Scholar
Kitchell, J. A. 1985. Evolutionary paleoecology: recent contributions to evolutionary theory. Paleobiology, 11:91104.Google Scholar
Lask, P. B. 1993. The hydrodynamic behavior of sclerites from Flexicalymene meeki. Palaios, 8:219225.Google Scholar
Lawrence, D. R. 1968. Taphonomy and information losses in fossil communities. Geological Society of America Bulletin, 79:13151340.CrossRefGoogle Scholar
Lespérance, P. J., and Desbiens, S. 1995. Selected Ordovician trilobites from the Lake St. John district of Quebec and their bearing on systematics. Paleontological Society Memoir, 42:119.Google Scholar
Lieberman, B. S. 1997. Early Cambrian paleogeography and tectonic history: a biogeographic approach. Geology, 25:10391042.Google Scholar
Lieberman, B. S. 1998. Cladistic analysis of the Early Cambrian olenelloid trilobites. Journal of Paleontology, 72:5978.Google Scholar
Ludvigsen, R., and Westrop, S. R. 1983. Trilobite biofacies of the Cambrian-Ordovician boundary interval in northern North America. Alcheringa, 7:301319.Google Scholar
Martinsson, A. (ed.) 1975. Evolution and morphology of the Trilobita, Trilobitoidea and Merostomata. Fossils and Strata, 4.CrossRefGoogle Scholar
Mikulic, D. G. 1990. The arthropod fossil record: biologic and taphonomic controls on its composition, p. 123. In Culver, S. J. (ed.), Arthropod Paleobiology. Short Courses in Paleontology, 3.Google Scholar
Owen, A. W., Harper, D. A. T., and Rong, J.-Y. 1991. Hiraantian trilobites and brachiopods in space and time, p. 179190. In Barnes, C. R., and Williams, S. H. (ed.), Advances in Ordovician Geology. Geological Survey of Canada Paper, 90-9.Google Scholar
Ramsköld, L., and Chatterton, B. D. E. 1991. Revision and subdivision of the polyphyletic “Leonaspis“ (Trilobita). Transactions of the Royal Society of Edinburgh: Earth Sciences, 82:333371.Google Scholar
Ramsköld, L., and Werdelin, L. 1991. The phylogeny and evolution of some phacopid trilobites. Cladistics, 7:2974.Google Scholar
Ross, R. J. Jr. 1975. Early Paleozoic trilobites, sedimentary facies, lithospheric plates, and ocean currents. Fossils and Strata, 4:307329.Google Scholar
Speyer, S. E. 1987. Comparative taphonomy and palaeoecology of trilobite lagerstätten. Alcheringa, 11:205232.CrossRefGoogle Scholar
Speyer, S. E., and Brett, C. E. 1985. Clustered trilobite assemblages in the Middle Devonian Hamilton Group. Lethaia, 18:85103.CrossRefGoogle Scholar
Speyer, S. E., and Brett, C. E. 1986. Trilobite taphonomy and Middle Devonian taphofacies. Palaios, 1:312327.CrossRefGoogle Scholar
Sundberg, F. A., and McCollum, L. B. 1997. Oryctocephalids (Corynexochida: Trilobita) of the Lower-Middle Cambrian boundary interval from California and Nevada. Journal of Paleontology, 71:10651090.Google Scholar
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Prentice Hall, Englewood Cliffs, New Jersey, 511 p.Google Scholar
Westrop, S. R. 1986. Taphonomic versus ecologic controls on taxonomic relative abundance patterns in tempestites. Lethaia, 19:123132.CrossRefGoogle Scholar
Westrop, S. R. 1989. Macroevolutionary implications of mass extinction—evidence from an Upper Cambrian stage boundary. Paleobiology, 15:4652.CrossRefGoogle Scholar
Westrop, S. R. 1996. Temporal persistence and stability of Cambrian biofacies: Sunwaptan (Upper Cambrian) trilobite faunas of North America. Paleogeography, Paleoclimatology, Paleoecology, 127:3346.Google Scholar
Westrop, S. R., and Adrain, J. M. 1998. Trilobite alpha diversity and the reorganization of Ordovician benthic marine communities. Paleobiology, 24:116.Google Scholar
Westrop, S. R., Ludvigsen, R., and Kindle, C. H. 1996. Marjuman (Cambrian) agnostoid trilobites of the Cow Head Group, western Newfoundland. Journal of Paleontology, 70:804829.Google Scholar
Westrop, S. R., Tremblay, J. V., and Landing, E. 1995. Declining importance of trilobites in Ordovician nearshore paleocommunities: dilution or displacement? Palaios, 10:7579.CrossRefGoogle Scholar
Whittington, H. B. 1956. Silicified Middle Ordovician trilobites: the Odontopleuridae. Bulletin of the Museum of Comparative Zoology, Harvard University, 114:155288.Google Scholar
Whittington, H. B. 1959. Silicified Middle Ordovician trilobites: Remopleurididae, Trinucleidae, Raphiophoridae, Endymionidae. Bulletin of the Museum of Comparative Zoology, Harvard, 121:371496.Google Scholar
Whittington, H. B., and Hughes, C. P. 1972. Ordovician geography and faunal provinces deduced from trilobite distribution. Philosophical Transactions of the Royal Society of London B. Biological Sciences, 263:235278.Google Scholar