Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T04:01:04.989Z Has data issue: false hasContentIssue false

Triassic roots of the amphiastraeid scleractinian corals

Published online by Cambridge University Press:  20 May 2016

Ewa Roniewicz
Affiliation:
Instytut Paleobiologii, Polska Akademia Nauk, Twarda 51/55, 00–818 Warszawa, Poland,
Jarosław Stolarski
Affiliation:
Instytut Paleobiologii, Polska Akademia Nauk, Twarda 51/55, 00–818 Warszawa, Poland,

Abstract

The Early Carnian (Upper Triassic) phaceloid coral originally described by Volz (1896) as Hexastraea fritschi, type species of Quenstedtiphyllia Melnikova, 1975, reproduced asexually by “Taschenknospung” (pocket-budding), a process documented herein for the first time. This type of budding is recognized only in the Amphiastraeidae, a family thus far recorded only from Jurassic-Cretaceous strata. Similar to amphiastraeids, Quenstedtiphyllia fritschi (Volz, 1896) has separate septal calcification centers and a mid-septal zone built of serially arranged trabeculae. The most important discriminating characters of the new amphiastraeid subfamily Quenstedtiphylliinae are one-zonalendotheca and radial symmetry of the corallite in the adult stage (in contrast to two-zonal and bilateral symmetry in the adult stage in Amphiastraeinae). Quenstedtiphyllia fritschi shares several primitive skeletal characters (plesiomorphies) with representatives of Triassic Zardinophyllidae and, possibly, Paleozoic plerophylline rugosans: e.g., thick epithecal wall and strongly bilateral early blastogenetic stages with the earliest corallite having one axial initial septum. To interpret the phylogenetic status of amphiastraeid corals, we performed two analyses using plerophylline rugosans and the solitary scleractinian Protoheterastraea, respectively, as the outgroups. The resulting phylogenetic hypotheses support grouping the Zardinophyllidae with the Amphiastraeidae in the clade Pachythecaliina (synapomorphy: presence of pachytheca). Taschenknospung is considered an autapomorphy for the Amphiastraeidae. This study is the first attempt to analyze the relationships of the Triassic corals cladistically.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beauvais, L. 1974. Studies upon the characters of the suborder Amphiastraeida Alloiteau, p. 238248. In Sokolov, B. S. (ed.), Ancient Cnidaria 1. Nauka, Novosibirsk.Google Scholar
Beauvais, L. 1976. Etude morphologique, taxonomique et phylogénétique du sous-ordre Amphiastraeida Alloiteau. Mémoires de la Société Géologique de France, nouvelle sér., 50(126):542Google Scholar
Cairns, S. D. 1995. The marine fauna of New Zealand: Scleractinia (Cnidaria: Anthozoa). New Zealand Oceanographic Institute Memoir 103:1210.Google Scholar
Cairns, S. D. and Macintyre., I. G. 1992. Phylogenetic implications of calcium carbonate mineralogy in the Stylasteridae (Cnidaria: Hydrozoa). Palaios, 7:96107.CrossRefGoogle Scholar
Choi, C. S., and Kim., Y. W. 2000. A study of the correlation between organic matrices and nanocomposite materials in oyster shell formation. Biomaterials, 21:213222.CrossRefGoogle ScholarPubMed
Coates, A. G., and Jackson., J. B. C. 1985. Morphological themes in the evolution of clonal and aclonal marine invertebrates, p. 67106. In Jackson, J. B. C., Buss, L. W., and Cook, R. E. (eds.), Biology and Evolution of Clonal Organisms. Yale University Press, New Haven.Google Scholar
Constantz, B. R., and Meike., A. 1990. Calcite centers of calcification in Mussa angulosa (Scleractinia), p. 201207. In Crick, R. E. (ed.), Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals. Plenum Press, New York.Google Scholar
Cuif, J. P. 1973. Recherches sur les Madréporaires du Trias. I. Famille Stylophyllidae. Bulletin du Muséum National d'Histoire Naturelle, Sciences de la Terre, 17(for 1972):211291Google Scholar
Cuif, J. P. 1975a. Recherches sur les Madréporaires du Trias. II. Astraeoida. Révision des genres Montlivaltia et Thecosmilia. Etude de quelques types structuraux du Trias de Turquie. Bulletin du Muséum National d'Histoire Naturelle, Sciences de la Terre, 40(for 1974):293400Google Scholar
Cuif, J. P. 1975b. Caractères morphologiques, microstructuraux et systématiques des Pachythecalidae nouvelle famille de Madréporaires triasiques. Géobios, 8:157180.CrossRefGoogle Scholar
Cuif, J. P. 1976. Recherches sur les Madréporaires du Trias. Formes cério-méandroides et thamnastérioides du Trias des Alpes et du Taurus sud-anatolien. Bulletin du Muséum National d'Histoire Naturelle Sciences de la Terre, 53:65195.Google Scholar
Cuif, J. P. 1977. Arguments pour une relation phylétique entre les Madréporaires paléozoïques et ceux du Trias. Implications systématiques de l'analyse microstructurale des Madréporaires triasiques. Mémoires de la Société Géologique de France, n.s., 56(129):154.Google Scholar
Cuif, J. P., and Dauphin., Y. 1998. Microstructural and physico-chemical characterization of ‘centers of calcification’ in septa of some Recent scleractinian corals. Paläontologische Zeitschrift, 72:257270.CrossRefGoogle Scholar
Cuif, J. P., and Stolarski., J. 1999. Origin and paleobiology of wall-based corals. Abstracts of the 8th International Symposium on Fossil Cnidaria and Porifera, Sendai, 95.Google Scholar
Deng, Zhanqiu, and Lei, Kong. 1984. Middle Triassic corals and sponges from Southern Guizhou and Eastern Yunnan. Acta Palaeontologica Sinica, 23:489504. (In Chinese, with English summary)Google Scholar
Eliašova, H. 1975. Sous-ordre Amphiastraeina Alloiteau, 1952 (Hexacorallia) des calcaires de štramberk (Tithonien, Tchécoslovaquie). Časopis pro mineralogii a geologii, 20:123.Google Scholar
Eliašova, H. 1976. Les coraux de l'ordre Hexanthiniaria Montanaro-Gallitelli, 1975, Zoantharia de Blainville, 1830 dans les calcaires de štramberk (Tithonien, Tchécoslovaquie). Věstnik Ústředniho ústavu geologického, 51:357366.Google Scholar
Eliašova, H. 1978. La redéfinition de l'ordre Hexantiniaria Montanaro-Gallitelli, 1975 (Zoantharia). Věstnik Ústředniho ústavu geologického 53:89101.Google Scholar
Étallon, A. 1859. Études paléontologiques sur le Haut-Jura. Rayonnées du Corallien. Mémoires de la Société d'Émulation du Departement du Doubs, sér. 3, 3:401550.Google Scholar
Ezaki, Y. 1997. The Permian coral Numidiaphyllum: new insights into anthozoan phylogeny and Triassic scleractinian origins. Palaeontology, 40:14.Google Scholar
Fedorowski, J. 1997. Rugosa and Scleractinia—a commentary on some methods of phylogenetic reconstructions. Acta Palaeontologica Polonica, 42:446456.Google Scholar
de Fromentel, E. 1856. Note sur les polypiers fossiles de l'étage portlandien de la Haute-Saǒne. Bulletin de la Société géologique de France, sér. 2, 13:851864.Google Scholar
Geyer, O. 1955. Beträge zur Korallenfauna des Stramberger Titon. Paläontologische Zeitschrift, 29:177216.CrossRefGoogle Scholar
Hill, D. 1981. Rugosa and Tabulate, p. F5F743. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Pt. F (Coelenterata), Supplement I. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ilina, T. G. 1984. Historical development of Anthozoa. Suborder Polycoeliina. Trudy Paleontologiceskogo Instituta, 198:1183. (In Russian)Google Scholar
Jell, J. S. 1981. Skeletogenesis of newly settled planulae of the hermatypic coral Porites lutea . Acta Palaeontologica Polonica, 25 (for 1980):311320.Google Scholar
Jull, R. K. 1973. Ontogeny and hystero-ontogeny in the Middle Devonian rugose coral Hexagonaria anna (Whitfield), p. 5968. In Boardman, R. S., Cheetham, A. H. and Oliver, W. A. Jr. (eds.), Animal Colonies. Dowden, Hutchinson and Ross, Stroudsburg.Google Scholar
Kenyon, J. C. 1997. Models of reticulate evolution in the coral genus Acropora based on chromosome numbers: parallels with plants Evolution, 51:756767.Google Scholar
Kitching, I. J., Forey, P. L., Humphries, C. J., and Williams., D. M. 1998. Cladistics: The Theory and Practice of Parsimony Analysis (second edition). Oxford University Press, Oxford, 223 p.Google Scholar
Koby, F. 1888. Monographie des polypiers jurassiques de la Suisse. Mémoires de la Société Paléontologique Suisse, 25:401456.Google Scholar
Kolodziej, B. 1995. Microstructure and taxonomy of Amphiastraeina (Scleractinia). Annales Societatis Geologorum Poloniae, 65:117.Google Scholar
Medakovic, D., Popovic, S., Grzeta, B., Plazonic, M., and Hrs-Brenko., M. 1997. X-ray diffraction study of calcification processes in embryos and larvae of the brooding oyster Ostrea edulis. Marine Biology, 129(4):615623Google Scholar
Melnikova, G. K. 1975. Late Triassic Scleractinians of the South-Western Pamirs, p. 1234, Donish, Dushanbe. (In Russian)Google Scholar
Melnikova, G. K. 1986. New data on systematics and phytogeny of the pachythecaliids (Scleractinia). In Sokolov, B. S. (ed.), Fanerozoiskie rify i korally SSSR. Nauka, Moskva. (In Russian)Google Scholar
Melnikova, G. K., and Roniewicz., E. 1976. Contribution to the systematics and phytogeny of Amphiastraeina (Scleractinia). Acta Palaeontologica Polonica, 21:97114.Google Scholar
Miyamoto, H., Miyashita, T., Okushima, M., Nakano, S., Morita, T., and Matsushiro., A. 1996. A carbonic anhydrase from the nacreous layer in oyster pearls. Proceedings of the National Academy of Sciences of the United States of America, 93:96579660.CrossRefGoogle ScholarPubMed
Montanaro-Gallitelli, E. 1975. Hexanthiniaria a new ordo of Zoantharia (Anthozoa, Coelenterata). Bollettino della Società Paleontologica Italiana, 14(1, preprint):2125Google Scholar
Morycowa, E. 1971. Hexacorallia et Octocorallia du Crétacé inférieur de Rarǎu (Carpathes orientales roumaines). Acta Palaeontologica Polonica, 16:1149.Google Scholar
Morycowa, E., and Marcopoulou-Diacantoni., A. 1994. Cretaceous scleractinian corals from the Parnassos area (Central Greece) (preliminary note). Bulletin of the Geological Society of Greece, 30:249273.Google Scholar
Ogilvie, M. 1896. Microscopic and systematic study of madreporarian types of corals. Philosophical Transactions of the Royal Society, B 187:83345.Google Scholar
Ogilvie, M. 1897. Die Korallen der Stramberger Schichten. Palaeontographica (Suppl. 2), 7:76284.Google Scholar
Oliver, W. A. Jr. 1968. Some aspects of colony development in corals. Journal of Paleontology, 42:1634.CrossRefGoogle Scholar
Oliver, W. A. Jr. 1981. On the relationship between Rugosa and Scleractinia (Summary). Acta Palaeontologica Polonica, 25(for 1980):339367Google Scholar
Quenstedt, F. A. 1881. Petrefactenkunde Deutschlands, 6: Korallen. Fues Verlag, Lepzig, 1093 p.Google Scholar
Railsback, L. B., and Aderson., T. F. 1987. Control of Triassic seawater chemistry and temperature on the evolution of post-Paleozoic aragonite-secreting faunas. Geology, 15:10021005.2.0.CO;2>CrossRefGoogle Scholar
Rinkevich, B., and Loya., Y. 1979. The reproduction of the Red Sea coral Stylophora pistillata. I. Gonads and planulae. Marine Ecology Progress Series, 1:133144.CrossRefGoogle Scholar
Roniewicz, E. 1966. Les Madréporaires du Jurassique supérieur de la bordure des Monts de Sainte-Croix, Pologne. Acta Palaeontologica Polonica, 11:157264.Google Scholar
Roniewicz, E. 1996. The key role of skeletal microstructure in recognizing high-rank scleractinian taxa in the stratigraphical record. Paleontological Society Papers, 1:187206.CrossRefGoogle Scholar
Roniewicz, E., and Michalik., J. 1991. Zardinophyllum (Scleractinia) from the Upper Triassic of the Central Western Carpathians (Czechoslovakia). Geologica Carpathica, 42:361363.Google Scholar
Roniewicz, E., and Morycowa., E. 1993. Evolution of the Scleractinia in the light of microstructural data. Courier Forschungsinstitut Senckenberg, 164:233240.Google Scholar
Roniewicz, E., and Stolarski., J. 1999. Evolutionary trends in the epithecate scleractinian corals. Acta Palaeontologica Polonica, 44:131166.Google Scholar
Rosen, B. R. 1986. Modular growth and form of corals: a matter of metamers?. Philosophical Transactions of the Royal Society of London, B 313:115142.Google Scholar
Sandberg, P. A. 1975. Bryozoan diagenesis: bearing on the nature of the original skeleton of rugose corals. Journal of Paleontology, 49:587606.Google Scholar
Schindewolf, O. 1942. Zur Kenntnis der Polycoelien und Plerophyllen. Eine Studie über den Bau der “Tetrakorallen” und ihre Beziehungen zu den Madreporarien. Abhandlungen des Reichsamts für Bodenforschung, Neue Folge, 204:1324.Google Scholar
Smith, S., and Ryder., T. A. 1926. The genus Corwenia, gen. nov. Annals and Magazine of Natural History, (9) 17:149159.CrossRefGoogle Scholar
Sorauf, J., and Cuif, J. P. 1999. Diagenesis in Scleractinia. Abstracts of the 8th International Symposium on Fossil Cnidaria and Porifera, Sendai, 45.Google Scholar
Stanley, S. M., and Hardie., L. A. 1998. Secular oscillations in the -carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144:319.CrossRefGoogle Scholar
Stolarski, J. 1996a. Gardineria—scleractinian “living fossil”. Acta Palaeontologica Polonica, 41:339367.Google Scholar
Stolarski, J. 1996b. Paleogene corals from Seymour Island, Antarctic Peninsula. In Gaździcki, A. (ed.), Palaeontological Results of the Polish Antarctic Expeditions. Pt. II. Palaeontologia Polonica, 55:5163.Google Scholar
Stolarski, J. 1999. Early ontogeny of the skeleton of Recent and fossil Scleractinia and its phylogenetic significance. Abstracts of the 8th International Symposium on Fossil Cnidaria and Porifera, Sendai, 37.Google Scholar
Stolarski, J. 2000. Origin and phytogeny of Guyniidae (Scleractinia) in the light of microstructural data. Lethaia, 33:1338.CrossRefGoogle Scholar
Swofford, D. L. 1998. PAUP, Phylogenetic Analysis Using Parsimony, version 4. 0b2 for Macintosh. Sinauer Associates, Inc.Google Scholar
Turnšek, D., and Ramovš, A. 1987. Upper Triassic (Norian-Rhaetian) reef buildups in the northern Julian Alps (NW Yugoslavia). Rozprave Slovenska Akademija Znanosti in Umetnosti 28(2):2767Google Scholar
Veron, J. E. N. 1995. Corals in Space and Time: Biogeography and Evolution of the Scleractinia. Cornell University Press, Ithaca, N.Y., 321 p.Google Scholar
Volz, W. 1896. Die Korallenfauna der Trias. II. Die Korallen der Schichten von St. Cassian in Süd Tirol. Palaeontographica, 443:1124.Google Scholar
Webb, G. E. 1993. Phytogeny reconstruction: problems posed by Paleozoic corals. Courier Forschungsinstitut Senckenberg, 164:7174.Google Scholar
Webb, G. E. 1996. Morphological variation and homoplasy: the challenge of Paleozoic coral systematics. Paleontological Society Papers, 1:135157.CrossRefGoogle Scholar
Wells, J. W. 1937. New genera of Mesozoic and Cenozoic corals. Journal of Paleontology, 11:7377.Google Scholar
Wendt, J. 1990. The first aragonitic rugose coral. Journal of Paleontology, 64:335340.CrossRefGoogle Scholar
Yamashiro, H., and Yamazato., K. 1987. Studies on the detachment of the disc of the mushroom coral Fungia fungites with special reference to hard structural changes. Galaxea, 6:163175.Google Scholar