Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T12:53:41.839Z Has data issue: false hasContentIssue false

Triassic Foraminifera from the Great Bank of Guizhou, Nanpanjiang Basin, south China: taxonomic account, biostratigraphy, and implications for recovery from end-Permian mass extinction

Published online by Cambridge University Press:  28 May 2021

Demir Altıner
Affiliation:
Department of Geological Engineering, Middle East Technical University, Üniversiteler Mahallesi, Dumlupınar Bulvarı No: 1, 06800Çankaya Ankara, Turkey
Jonathan L. Payne*
Affiliation:
Department of Geological Sciences, Stanford University, Stanford, CA94305, USA
Daniel J. Lehrmann
Affiliation:
Department of Geosciences, Trinity University, San Antonio, TX78212, USA
Sevinç Özkan-Altıner
Affiliation:
Department of Geological Engineering, Middle East Technical University, Üniversiteler Mahallesi, Dumlupınar Bulvarı No: 1, 06800Çankaya Ankara, Turkey
Brian M. Kelley
Affiliation:
Department of Geosciences, The Pennsylvania State University, University Park, PA16802, USA
Mindi M. Summers
Affiliation:
Department of Biological Sciences, University of Calgary, 507 Campus Drive NW, Calgary, AB, T2N 1N4, Canada
Meiyi Yu
Affiliation:
College of Resources and Environmental Engineering, Guizhou University, Caijiaguan, 550003 Guiyang, Guizhou, China
*
*Corresponding author

Abstract

Foraminifera are important components of tropical marine benthic ecosystems and their recovery pattern from the end-Permian mass extinction can yield insights into the Mesozoic history of this group. Here we report the calcareous and agglutinated foraminifera recovered from five measured stratigraphic sections on the Great Bank of Guizhou, an uppermost Permian to Upper Triassic isolated carbonate platform in the Nanpanjiang Basin, south China. The material contains >100 Triassic species, including three that are newly described (Arenovidalina weii n. sp., Meandrospira? enosi n. sp., and Spinoendotebanella lehrmanni n. gen., n. sp.), ranging from Griesbachian (Induan) to Cordevolian (Carnian) age. The species belong to the classes Miliolata, Textulariata, Fusulinata, Nodosariata, and to an unknown class housing all aragonitic forms of the orders Involutinida and Robertinida. Based on previously established conodont zones and carbon isotope chemostratigraphy, the Griesbachian (early Induan) through Illyrian (late Anisian) interval has been subdivided into 12 foraminiferal zones and two unnamed intervals devoid of foraminifera. Following the extinction at the Permian-Triassic boundary, habitable ecological niches of Griesbachian age were invaded by disaster taxa that subsequently became extinct during the Dienerian (late Induan) and left no younger descendants. The disaster taxa were replaced by Lazarus taxa with Permian origins, which were then decimated by the Smithian-Spathian (mid-Olenekian) boundary crisis. The tempo of recovery appears to have been modulated by environmental changes during the Griesbachian through Smithian that involved both climate change and expansion of anoxic ocean bottom waters. Uninterrupted and lasting recovery of benthic foraminifera did not begin until the Spathian.

UUID: http://zoobank.org/2a6e9061-b163-402a-9098-8765a80576b3

Type
Memoir
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

(with Altıner and Payne as authors of the ‘Systematic paleontology’ section)

References

Algeo, T.J., Chen, Z.Q., Fraiser, M.L., and Twitchet, R.J., 2011, Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 308, p. 111.10.1016/j.palaeo.2011.01.011CrossRefGoogle Scholar
Altıner, D., 1981, Recherches stratigraphiques et micropaléontologiques dans le Taurus Oriental ay NW de Pinarbasi (Turquie) [Docteur ès Sciences, Sciences de la Terre]: Université de Genève, Thèse No. 2005, 450 p.Google Scholar
Altıner, D., 1984, Upper Permian foraminiferal biostratigraphy in some localities of the Taurus Belt, in Tekeli, O., and Göncüoğlu, M.C., eds., Geology of the Taurus Belt: Publications of the Mineral Research and Exploration Institute (MTA), p. 255266.Google Scholar
Altıner, D., 1991, Microfossil biostratigraphy (mainly Foraminifers) of the Jurassic-Lower Cretaceous carbonate successions in north-western Anatolia, Turkey: Geologica Romana, v. 27, p. 167213.Google Scholar
Altıner, D., and Koçyiğit, A., 1993, Third remark on the geology of Karakaya Basin. An Anisian megablock in northern central Anatolia: micropaleontologic, stratigraphic and tectonic implications for the rifting stage of Karakaya Basin, Turkey: Revue de Paléobiologie, v. 12, p.117.Google Scholar
Altıner, D., and Payne, J.L., 2017, Origination and early evolution of Involutinida in the aftermath of the end-Permian mass extinction: Praetriadodiscus n. gen., and two new species: Revue de Micropaléontologie, v. 60, p. 573584.10.1016/j.revmic.2017.10.002CrossRefGoogle Scholar
Altıner, D., and Zaninetti, L., 1981, Le Trias dans la région de Pinarbasi, Taurus Oriental, Turquie: Unités lithologiques, micropaléontologie, milieu de depot: Rivista Italiana di Paleontologia, v. 86, p. 705760.Google Scholar
Altıner, D., Baud, A., Guex, J., and Stampfli, G., 1980, La limite Permien-Trias dans quelques localités du Moyen-orient: Recherches stratigraphiques et micropaléontologiques: Rivista Italiana di Paleontologia e Stratigrafia, v. 101, p. 235248.Google Scholar
Altıner, D., Özkan-Altıner, S., and Koçyiğit, A., 2000, Late Permian foraminiferal biofacies belts in Turkey: paleogeographic and tectonic implications, in Bozkurt, E., Winchester, J.A., and Piper, J.D.A., eds., Tectonics and Magmatism in Turkey and the Surrounding Area: Geological Society, London, Special Publication, No. 173, p. 8396.Google Scholar
Altıner, D., Groves, J.R., and Özkan-Altıner, S., 2005, Calcareous foraminiferal recovery from the end-Permian mass extinction, southern Turkey: Abstracts. International Symposium on Triassic Chronostratigraphy and Biotic Recovery, Chaouhu, China: Albertiana, v. 33, p. 1417.Google Scholar
Angiolini, L., Carabelli, L., Nicora, A., Crasquin-Soleau, S., Marcoux, J., and Rettori, R., 2007, Brachiopods and other fossils from the Permo-Triassic boundary beds of the Antalya Nappes (SW Taurus, Turkey): Geobios, v. 40, p. 715729.10.1016/j.geobios.2007.01.007CrossRefGoogle Scholar
Angiolini, L., Checconi, A., Gaetani, M., and Rettori, R., 2010, The latest Permian mass extinction in the Alborz Mountains (north Iran): Geological Journal, v. 45, p. 216229.10.1002/gj.1203CrossRefGoogle Scholar
Apthorpe, M., 2003, Early to lowermost Middle Triassic Foraminifera from the Locker Shale of Hampton-1 well, Western Australia: Journal of Micropaleontology, v. 22, p. 127.10.1144/jm.22.1.1CrossRefGoogle Scholar
Bagherpour, B., Bucher, H., Baud, A., Brosse, M., Vennemann, T., Martini, R., and Goudun, K., 2017, Onset, development, and cessation of basal Early Triassic microbialites (BETM) in the Nanpanjiang pull-apart Basin, south China Block: Gondwana Research, v. 44, p. 178204.10.1016/j.gr.2016.11.013CrossRefGoogle Scholar
Bambach, R.K., 2006, Phanerozoic biodiversity mass extinctions: Annual Review of Earth and Planetary Sciences, v. 34, p. 127155.10.1146/annurev.earth.33.092203.122654CrossRefGoogle Scholar
Baroz, F., Martini, R., and Zaninetti, L., 1990, Un aspect de la plate-forme carbonate Triasique dans les Hellénides internes: le chaînon d'Oréokastro: Rivista Italiana di Paleontologia e Stratigrafia, v. 96, p. 2138.Google Scholar
Baud, A., and Bhat, G., 2014, The Permian-Triassic transition in the Kashmir Valley: IGCP 630 Field Workshop in Kashmir, 36 p.Google Scholar
Baud, A., Zaninetti, L., and Brönnimann, P., 1971, Les foraminifères de l'Anisien (Trias moyen) des Préalpes Medianes Rigides (Préalpes romandes, Suisse, et Préalpes du Chablais, France): Archives des Sciences, Genève, v. 24, p. 7395.Google Scholar
Baud, A., Brönnimann, P., and Zaninetti, L., 1974, Sur la présence de Meandrospira pusilla (Ho) (Foraminifère), dans le Trias inférieur de Kuh-e-Ali Bashi, Julfa, NW Iran. Paläontologische Zeitschrift, v. 48, p. 205213.10.1007/BF02985951CrossRefGoogle Scholar
Beccaletto, L., Bartolini, A.-C., Martini, R., Hochuli, P.A., and Kozur, H., 2005, Biostratigraphic data from the Çetmi Melange, northwest Turkey: palaeogeographic and tectonic implications: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 221, p. 215244.10.1016/j.palaeo.2005.02.011CrossRefGoogle Scholar
Benjamini, C., 1988, Triassic Foraminifera from Makhtesh Ramon, central Negev, southern Israel: Revue de Paléobiologie, Benthos’86, Volume Spécial No. 2, p. 129144.Google Scholar
Bérczi-Makk, A., 1981, Palaeolituonella majzoni nov. gen. nov. sp. (Foraminifera) from a Wetterstein Reef limestone in NE Hungary: Acta Geologica Academiae Scientiarum Hungaricae, v. 24, p. 389394.Google Scholar
Bérczi-Makk, A., 1987, Earlandia (Foraminifera) species from the Permian-Triassic boundary in N Hungary: Magyar Állami Földtani Intézet (Separatum), v. 1987, p. 215226.Google Scholar
Berra, F., Rettori, R., and Bassi, D., 2005, Recovery of carbonate platform production in the Lombardy Basin during the Anisian: paleoecological significance and constrain on paleogeographic evolution: Facies, v. 50, p. 615627.10.1007/s10347-004-0043-4CrossRefGoogle Scholar
Blau, J., 1989, Aulotortus? bakonyensis n. sp. (Involutinina, Foraminifera) from the Dogger of Hungary: Neues Jahrbuch für Geologie und Paläontologie, Monatschefte, Heft 8 (1989), p. 459466.10.1127/njgpm/1989/1989/459CrossRefGoogle Scholar
Blau, J., Wenzel, B., Senff, M., and Lukas, V., 1995, Die foraminiferen des Oberen Bundsandsteins (Röt) und des Unteren Muschelkalks (Germanische Trias: Skyth, Anis) in Nordhessen: Geologisch-Paläontologische Mitteilungen Inssbruck, v. 20, p. 1333.Google Scholar
Bozorgnia, F., 1973, Paleozoic foraminiferal biostratigraphy of Central and East Alborz Mountains, Iran: National Iranian Oil Company, Geological Laboratories Publication, No. 4, p. 1185.Google Scholar
Brayard, A., Bucher, H., Escarguel, G., Fluteau, F., Bourquin, S., and Galfetti, T., 2006, The Early Triassic ammonoid recovery: paleoclimatic significance of diversity gradients: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 239, p. 374395.10.1016/j.palaeo.2006.02.003CrossRefGoogle Scholar
Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Brüchwiler, T., Goudemand, N., Galfetti, T., and Guex, J., 2009, Good genes and good luck: ammonoid diversity and the end-Permian mass extinction: Science, v. 325, p. 11181121.10.1126/science.1174638CrossRefGoogle Scholar
Brayard, A., Nützel, A., Stephen, D.A., Bylund, K.G., Jenks, K., and Bucher, H., 2010, Gastropod evidence against the Early Triassic Lilliput effect: Geology, v. 38, p. 147150.10.1130/G30553.1CrossRefGoogle Scholar
Broglio Loriga, C., and Cassinis, G., 2003, The Permo-Triassic boundary in the Southern Alps (Italy) and in adjacent Periadriatic regions, in Sweet, W.C., Zunyi, Y., Dickins, J.M., and Hongfu, Yin, eds., Permo-Triassic Events in the Eastern Tethys: Cambridge, Cambridge University Press, p. 7897.Google Scholar
Broglio Loriga, C., Neri, C., Pasini, M., and Posenato, R., 1988, Marine fossil assemblages from Upper Permian to lowermost Triassic in the Western Dolomites: Memorie della Società Geologica Italiana, v. 34, p. 544.Google Scholar
Broglio Loriga, C., Góczán, F., Haas, J., Lenner, K., Neri, C., Orovecz-Scheffer, A., Posenato, R., Szabó, I., and Makk, A.T., 1990, The Lower Triassic sequences of the Dolomites (Italy) and Transdanubian Mid-Mountains (Hungary) and their correlation: Memoire de Scienze Geologiche già Memoire degli İstituti di Geologia e Mineralogia dell'Università di Padova, v. 42, p. 41103.Google Scholar
Brönnimann, P., and Zaninetti, L., 1972, Foraminifera from the basal upper Muschelkalk at Hyères, western Basse-Provence, southern France: Rivista Italiana di Paleontologia, v. 78, p. 3164.Google Scholar
Brönnimann, P., Zaninetti, L., and Bozorgnia, F., 1972a, Triassic (Skythian) smaller foraminifera from the Elika Formation of the central Alborz, northern Iran, and from the Siusi Formation of the Dolomites, northern Italy: Mitteilung Gesellschaft der Geologie und Bergbaustudenten, Innsbruck, v. 21, p. 861884.Google Scholar
Brönnimann, P., Zaninetti, L., Bozorgnia, F., and Huber, H., 1972b, Ammodiscids and Ptychocladiids (Foraminiferida) from the Triassic Elika Formation, Nessa-Hassanakdar section, central Alborz, Iran: Rivista Italiana di Paleontologia, v. 78, p. 128.Google Scholar
Brönnimann, P., Cadet, J.-P., and Zaninetti, L., 1973a. Sur la presence d’Involutina sinuosa pragsoides (Oberhauser) (Foraminifère) dans l'Anisien supérieur probable de Bosnie-Herzégovine méridionale (Yugoslavie): Rivista Italiana di Paleontologia, v. 79, p. 301336.Google Scholar
Brönnimann, P., Cadet, J.-P., and Zaninetti, L., 1973b, Sur quelques foraminifères de l'Anisien (Trias moyen) de Bosnie-Herzégovine méridionale, Yugoslavie: Rivista Italiana di Paleontologia, v. 79, p. 461478.Google Scholar
Brönnimann, P., Zaninetti, L., Moshtaghian, A., and Huber, H., 1973c. Foraminifera from the Sorkh Shale Formation of the Tabas area, east-central Iran: Rivista Italiana di Paleontologia, v. 79, p. 132.Google Scholar
Brönnimann, P., Zaninetti, L., Moshtaghian, A., and Huber, H., 1974, Foraminifera and microfacies of the Triassic Espakh Formation, Tabas area, east central Iran: Rivista Italiana di Paleontologia, v. 80, p. 148.Google Scholar
Bucur, I.I., Strutinski, C. and Paica, M., 1997, A new occurrence of Triassic deposits NE of Oravița (Southern Carpathians, Rumania) and its paleotectonic significance: Geologica Carpathica, v. 48, p. 3948.Google Scholar
Budurov, K., Calvet, F., Goy, A., Marquez-Aliaga, A., Marquez, L., Trifonova, E., and Arche, A., 1993, Middle Triassic stratigraphy and correlation in parts of the Tethys Realm (Bulgaria and Spain), in Hagdorm, H., and Seilacher, A., eds., Muschelkalk: Schöntaler Symposium 1991 (Sonderbände der Gesellschaft für Naturkunde in Württemberg 2), Stuttgart, Lorb (Goldschneck), p. 157164.Google Scholar
Čatalov, G., and Trifonova, E., 1979, On the stratigraphy and lithology of the Lower and Middle Triassic carbonate rocks in part of the Trojan Balkan Mountain: Palaeontology, Stratigraphy and Lithology, v. 10, p. 4156.Google Scholar
Cavalier-Smith, T., 2002, The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa: International Journal of Systematic and Evolutionary Microbiology, v. 52, p. 297354.10.1099/00207713-52-2-297CrossRefGoogle ScholarPubMed
Cavalier-Smith, T., 2003, Protists phylogeny and the high-level classification of Protozoa: European Journal of Protistology, v. 39, p. 338348.10.1078/0932-4739-00002CrossRefGoogle Scholar
Chablais, J., 2010, Sedimentology and biostratigraphy of the Upper Triassic atoll-type carbonates of the Sambosan Accretionary Complex (Panthalassan Domain, Japan): depositional setting, paleogeography and relationship to their counterparts in the Tethys: Terre and Environment, v. 91, p. 1204.Google Scholar
Charollais, J., Brönnimann, P., and Zaninetti, L., 1966, Troisième note sur les Foraminifères du Crétacé inférieur de la région genevoise. Remarques stratigraphiques et description de Pseudotextulariella salevensis n. sp.; Haplophragmoides joukowskyi n. sp.; Citaella? favrei n. sp.: Archives des Sciences, Genève, v. 19, p. 2348.Google Scholar
Chen, J., Beatty, T.W., Henderson, C.M., and Rowe, H., 2009, Conodont biostratigraphy across the Permian-Triassic boundary at the Dawen section, Great Bank of Guizhou, Guizhou Province, south China: implications for the late Permian extinction and correlation with Meishan: Journal of Asian Earth Sciences, v. 36, p. 442458.10.1016/j.jseaes.2008.08.002CrossRefGoogle Scholar
Chen, J., Tong, J., Song, H., Luo, M., Huang, Y., and Xiang, Y., 2015, Recovery pattern of brachiopods after the Permian–Triassic crisis in south China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 433, p. 91105.10.1016/j.palaeo.2015.05.020CrossRefGoogle Scholar
Chen, Z.Q., and Benton, M.J., 2012, The timing and pattern of biotic recovery following the end-Permian mass extinction: Nature Geoscience, v. 5, p. 375383.CrossRefGoogle Scholar
Chen, Z.Q., and McNamara, K.J., 2006, End-Permian extinction and subsequent recovery of the Ophiuroidea (Echinodermata): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 236, p. 321344.10.1016/j.palaeo.2005.11.014CrossRefGoogle Scholar
Chen, Z.Q., Kailho, K., and George, A.D., 2005, Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: a global review: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 224, p. 270290.10.1016/j.palaeo.2005.03.037CrossRefGoogle Scholar
Cherdyntsev, W., 1914, Foraminiferal fauna of the Permian deposits of the eastern belt of European Russia: Kazan Trudy Obshchestva Estestvoispytateley pri Imperatorskomy Kazanskomy Universitety, v. 46, p. 388. [in Russian]Google Scholar
Ciarapica, G., and Zaninetti, L., 1985, Gandinella apenninica, n. gen., n. sp. (Foraminifère) dans le Trias supérieur (Rhetien, Biozone à Triasina hantkeni) du Monte Cetona, Apennin Septentrional: Revue de Paléobiologie, v. 4, p. 307310.Google Scholar
Ciarapica, G., Cirilli, S., Passeri, L., Trincianti, E., and Zaninetti, L., 1987, ‘Anidriti di Burano’ et ‘Formation du Monte Cetona’ (nouvelle foramition), biostratigraphie de deux series-types du Trias supérieur dans l'Apennin septentrional: Revue de Paléobiologie, v. 6, p. 341409.Google Scholar
Ciarapica, G., Cirilli, S., Martini, R., Rettori, R., Salvini-Bonnard, G., and Zaninetti, L., 1990, Carbonate buildups and associated facies in Monte Facito Formation: Bollettino della Società Geologica Italiana, v. 109, p. 151164.Google Scholar
Cirilli, S., Pirini Radrizzani, C., Ponton, M., and Radrizzani, S., 1998, Stratigraphical and paleoenvironmental analysis of the Permian-Triassic transition in the Badia Vally (Southern Alps, Italy): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 138, p. 85113.10.1016/S0031-0182(97)00123-5CrossRefGoogle Scholar
Conil, R., and Pirlet, H., 1970, Le calcaire dinantiennes et leur influence sur la dispersion et l’évolution des foraminifères: Memoires de l'Institut Géologique de l'Université de Louvain, v. 29, p. 955.Google Scholar
Crasquin-Soleau, S., Richoz, S., Marcoux, J., Angiolini, L., Nicora, A., and Baud, A., 2002, Les événements de la limite Permien-Trias: derniers survivants et/ou premiers re-colonisateurs parmi les ostracodes du Taurus (Sud-Ouest de la Turquie): Comptes Rendus Geoscience, v. 334495.Google Scholar
Crasquin-Soleau, S., Marcoux, J., Angiolini, L., Richoz, S., Nicora, A., Baud, A., and Bertho, Y., 2004, A new ostracode fauna from the Permian-Triassic boundary in Turkey (Taurus, Antalya Nappes): Micropaleontology, v. 50, p. 281295.10.2113/50.3.281CrossRefGoogle Scholar
Cummings, R.H., 1955, Nodosinella Brady, 1876 and associated upper Paleozoic genera: Micropaleontology, v. 1, p. 221238.CrossRefGoogle Scholar
Cushman, J.A., 1911, A monograph of the foraminifera of the North Pacific Ocean. Part 2, Textulariidae: Bulletin of the United States National Museum, v. 71, no. 2, p. 1108.Google Scholar
Cushman, J.A., 1917, A monograph of the foraminifera of the North Pacific Ocean. Part 6. Miliolidae: Bulletin of the United States National Museum, v. 71, no. 6, p. 1108.Google Scholar
Cushman, J.A., 1927, An outline of a re-classification of the foraminifera: Contributions from the Cushman Laboratory for Foraminiferal Research, v. 3, no. 1, p. 1105.Google Scholar
Cushman, J.A., 1928, Foraminifera their classification and economic use: The Cushman Laboratory for Foraminiferal Research, Special Publication 1, p. 1101.Google Scholar
Dağer, Z., 1978a. Les Foraminifères du Trias de la Peninsule de Kocaeli-Turquie: Notes du Laboratoire de Paléontologie de l'Université de Genève, v. 3, no. 1–4, p. 2269.Google Scholar
Dağer, Z., 1978b, Sur quelques foraminifères nouveaux du Trias de Kocaeli, Turquie: Notes du Laboratoire de Paléontologie de l'Université de Genève, v. 2, no. 4, p. 2124.Google Scholar
Dai, X., Song, H., Wignall, P.B., Jia, E., Bai, R., Wang, F., Chen, J., and Tian, L., 2018, Rapid biotic rebound during the late Griesbachian indicates heterogeneous recovery patterns after the Permian-Triassic mass extinction: Geological Society of America Bulletin, v. 130, p. 20152030.10.1130/B31969.1CrossRefGoogle Scholar
Dain, L.G., and Grozdilova, L., 1953, Iskopaemye Foraminifery SSSR: Turneyellidy I Archaedistsidy (Fossil foraminifera of the USSR: Tournayellidae and Archaediscidae): Trudy Vsesoyuznogo Neftyanogo Nauchno-issledovatel'skogo Geologorazvedochnogo Instituta (VNIGRI), n. ser., v. 74, p. 1115.Google Scholar
de Blainville, H.M.D., 1824, Dictionnaire des Sciences Naturelles, mollus.-morf: Paris, F. G. Levrault, v. 32, p. 1567.Google Scholar
de Bono, A., Martini, R., Zaninetti, L., Hirsch, F., Stampfli, G.M., and Vavassis, I., 2001, Permo-Triassic stratigraphy of the pelagonian zone in Central Evia Island (Greece): Eclogae Geologicae Helvetiae, v. 94, p. 289311.Google Scholar
de Graciansky, P.-C., Hardenbol, J., Jacquin, T., and Vail, P., 1998, Mesozoic and Cenozoic Sequence Stratigraphy of European Basins: SEPM (Society for Sedimentary Geology) Special Publication, No. 60, 791 p.Google Scholar
de Montfort, P.D., 1808, Conchyliologie Systématique et Classification Méthodique des Coquilles: Paris, F. Schoell, 410 p.10.5962/bhl.title.10571CrossRefGoogle Scholar
d'Orbigny, A.D., 1839, Foraminifères, in de la Sagra, R., Histoire Physique, Politique et Naturelle de l'Ile de Cuba: Paris, A. Bertrand, p. 1224.Google Scholar
d'Orbigny, A., 1850–1852, Prodrome de Paléontologie Stratigraphique Universelle des Animaux Mollusques et Rayonnés Faisant Suite au Cours Elémentaire de Paléontologie et de Géologie Stratigraphiques: Paris, Victor Masson, 3 vol., 1626 p. (v. 1 [1850], 394 p.; v. 2 [1850], 848 p.; v. 3 [1852], 384 p.).10.5962/bhl.title.45605CrossRefGoogle Scholar
Derville, H., 1931, Les Marbres du Calcaire Carbonifère en Bas-Boulonnais. Deuxième partie. Etude micrographique des organisms: Strasbourg, O. Boehm, p. 113142.Google Scholar
Efimova, N.A., 1974, Triassic foraminifers of the northwest Caucasus and Cis-Caucasus: Akademiya Nauk SSSR, Voprosy Mikropaleontologii, v. 17, p. 5483. [in Russian with English summary]Google Scholar
Efimova, N.A., 1991, Triassic System, in Azbell, A.Y., and Grigelis, A.A., eds., Practical Manual on Microfauna of the USSR, Volume 5, Mesozoic Foraminifers: Leningrad, Nedra, p. 1625.Google Scholar
Ehrenberg, C.G., 1838, Über dem blossen Auge unsichtbare Kalkthierchen und Kieselthierchen als Hauptbestandtheile der Kreidegebirge: Bericht über die zu Bekanntmachung geeigncten Verhandlungen der Königlichen Preussischen Akademie der Wissenschaften zu Berlin, p. 192200.Google Scholar
Emmerich, A., Zamparelli, V., Bechstädt, T., and Zühlke, R., 2005, The reefal margin and slope of a Middle Triassic carbonate platform: The Latemar (Dolomites, Italy): Facies, v. 50, p. 573614.Google Scholar
Erwin, D.H., 1993, The Great Paleozoic Crisis: Life and Death in the Permian: New York, Columbia University Press, 327 p.Google Scholar
Erwin, D.H., 1994, The Permo-Triassic extinction: Nature, v. 367, p. 231236.10.1038/367231a0CrossRefGoogle Scholar
Erwin, D.H., 2007, Increasing returns, ecological feedback and the Early Triassic recovery: Palaeoworld, v. 16, p. 915.10.1016/j.palwor.2007.05.013CrossRefGoogle Scholar
Erwin, D.H., and Pan, H.Z., 1996, Recoveries and radiations: gastropods after the Permian-Triassic mass extinction, in Hart, M.B., ed., Recovery from Mass Extinction Events: Geological Society, London, Special Publication 102, p. 223229.Google Scholar
Faletti, P., and Ivanova, D., 2003, Monte Guglielmo Limestone: a middle–late Anisian carbonate platform in central Southern Alps (Italy): Atti Ticinensi di Scienze della Terra, v. 44, p. 7583.Google Scholar
Feng, Q., and Algeo, T.J., 2014, Evolution of oceanic redox conditions during the Permian-Triassic transition: evidence from deepwater radiolarian facies: Earth-Science Reviews, v. 137, p. 3451.Google Scholar
Feng, Q., He, W., Gu, S., Meng, Y., Jin, Y., and Zhang, F., 2007, Radiolaria evolution during the latest Permian in south China: Global and Planetary Change, v. 55, p. 177192.10.1016/j.gloplacha.2006.06.012CrossRefGoogle Scholar
Firi, K.F., Sremac, J., and Vlahović, I., 2016, The first evidence of Permian–Triassic shallow-marine transitional deposits in northern Croatia: Samoborsko Gorje Hills: Swiss Journal of Geosciences, v. 109, p. 401413.Google Scholar
Fischer, A.G., and Arthur, M.A., 1977, Secular variations in the pelagic realm, in Cook, H.E., and Enos, P., eds., Deep-water Carbonate Environments: Society of Economic Paleontologists and Mineralogists, Special Publication 25, p. 1950.10.2110/pec.77.25.0019CrossRefGoogle Scholar
Flügel, E., 2002, Triassic reef patterns, in Kiessling, W., Flügel, E., and Golonka, J., Phanerozoic Reef Patterns: Society of Economic Paleontologists and Mineralogists, Special Publication 72, p. 391463.Google Scholar
Flügel, E., Ramovš, A., and Bucur, I.I., 1994, Middle Triassic (Anisian) limestones from Bled, northwestern Slovenia: microfacies and microfossils: Geologija, v. 36, p. 157181.Google Scholar
Fontaine, H., Khoo, H.P., and Vachard, D., 1988, Discovery of Triassic fossils at Bukit Chuping, in Gunung Sinyum area, and at Kota Jin, Peninsular Malaysia: Journal of Southeast Asian Earth Sciences, v. 2, p. 145162.CrossRefGoogle Scholar
Fraiser, M.L., and Bottjer, D.J., 2004, The non-actualistic Early Triassic gastropod fauna: a case study of the Lower Triassic Sinbad Limestone Member: Palaios, v. 19, p. 259275.10.1669/0883-1351(2004)019<0259:TNETGF>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Fraiser, M.L., and Bottjer, D.J., 2007a, Elevated atmospheric CO2 and the delayed biotic recovery from the end-Permian mass extinction: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 252, p. 164175.10.1016/j.palaeo.2006.11.041CrossRefGoogle Scholar
Fraiser, M.L., and Bottjer, D.J., 2007b, When bivalves took over the world: Paleobiology, v. 33, p. 397413.10.1666/05072.1CrossRefGoogle Scholar
Fuchs, W., 1967, Über Ursprung und Phylogenie der Trias-“Globigerinen” und die Bedeutung dieses. Formenkreises für das echte Plankton: Verhandlungen der Geologischen Bundesanstalt, v. 110, p. 135176.Google Scholar
Fuchs, W., 1970, Eine alpine, tiefliassiche Foraminiferenfauna von Hernstein Niederösterreich: Verhandlungen der Geologischen Bundesanstalt, v. 1, p. 66145.Google Scholar
Fugagnoli, A., and Posenato, R., 2004, Middle Triassic (Anisian) benthic foraminifera from the Monte Pra’ della Vacca/Kühwiesenkopf section It Formation, Braies Dolomites, Northern Italy): Bollettino della Società Paleontologica Italiana, v. 43, p. 347360.Google Scholar
Fugagnoli, A., Giannetti, A., and Rettori, R., 2003, A new foraminiferal genus (Miliolina) from the Early Jurassic of the Southern Alps (Calcari Grigi Formation, northeastern Italy): Revista Espoñala de Micropaleontologia, v. 35, p. 4350.Google Scholar
Gaillot, J., and Vachard, D., 2007, The Khuff Formation (Middle East) and time-equivalents in Turkey and south China: biostratigraphy from Capitanian to Changhsingian times (Permian), new foraminiferal taxa, and palaeogeographical implications: Coloquios de Paleontología, v. 57, p. 37223.Google Scholar
Gale, L., Kolar-Jurkovšek, T., Šmuc, A., and Rožič, B., 2012, Integrated Rhaetian foraminiferal and conodont biostratigraphy from the Slovenian Basin, eastern Southern Alps: Swiss Journal of Geosciences, v. 105, p. 405462.10.1007/s00015-012-0117-1CrossRefGoogle Scholar
Gale, L., Peybernes, B., Celarc, B., Hoćevar, M., Šelih, V.S., and Martini, R., 2018, Biotic composition and microfacies distribution of Upper Triassic build-ups: new insights from the lower Carnian limestone of Lesno Brdo, central Slovenia: Facies, v. 64, no. 3, p. 124. https://doi.org/10.1007/s10347-018-0531-6.CrossRefGoogle Scholar
Galfetti, T., Hochuli, P.A., Brayard, A., Bucher, H., Weissert, H., and Vigran, J.O., 2007, Smithian-Spathian boundary event: evidence for climatic change in the wake of the end-Permian biotic crisis: Geology, v. 35, p. 291294.CrossRefGoogle Scholar
Galfetti, T., Bucher, H., Martini, R., Hochuli, P.A., Weissert, H., Crasquin-Soleau, S., Brayard, A., Goudmand, N., Brühwiler, T., and Goudun, K., 2008, Evolution of Early Triassic outer platform paleoenvironments in the Nanpanjiang Basin (south China) and their significance for the biotic recovery: Sedimentary Geology, v. 204, p. 3660.10.1016/j.sedgeo.2007.12.008CrossRefGoogle Scholar
Gazdzicki, A., and Smit, O.E., 1977, Triassic foraminifers from the Malay Peninsula: Acta Geologica Polonica, v. 27, p. 319332.Google Scholar
Gazdzicki, A., Trammer, J., and Zwidzka, K., 1975, Foraminifers from the Muschelkalk of Southern Poland: Acta Geologica Polonica, v. 25, p. 285298.Google Scholar
Gerke, A.A., 1959, About the new genus of Permian nodosauriform foraminifera and refinement of the characteristics of the genus Nodosaria: Collection of Articles on Paleontology and Biostratigraphy, v. 17, p. 4159.Google Scholar
Goudemand, N., Romano, C., Leu, M., Bucher, H., Trotter, J.A., and Williams, I.S., 2019, Dynamic interplay between climate and marine biodiversity upheavals during the early Triassic Smithian–Spathian biotic crisis: Earth-Science Reviews, v.195, p. 169178.CrossRefGoogle Scholar
Groves, J.R., and Altıner, D., 2005, Survival and recovery of calcareous foraminifera pursuant to the end-Permian mass extinction: Comptes Rendus Palevol, v. 4, p. 487500.CrossRefGoogle Scholar
Groves, J.R., Altıner, D., and Rettori, R., 2005, Extinction, survival, and recovery of lagenide foraminifers in the Permian-Triassic boundary interval, central Taurides, Turkey: Journal of Paleontology, v. 62, Supplement, p. 138.10.1666/0022-3360(2005)79[1:ESAROL]2.0.CO;2CrossRefGoogle Scholar
Groves, J.R., Rettori, R., Payne, J.L., Boyce, M.D., and Altıner, D., 2007, End-Permian mass extinction of lagenide foraminifers in the Southern Alps (Northern Italy): Journal of Paleontology, v. 81, p. 415434.10.1666/05123.1CrossRefGoogle Scholar
Gu, S., Feng, Q., and He, W., 2007, The last Permian deep-water fauna: Changhsingian small foraminifers from southwestern Guangxi, south China: Micropaleontology, v. 53, p. 311330.Google Scholar
Haig, D.W., McCartain, E., Barber, L., and Backhouse, J., 2007, Triassic–Lower Jurassic Foraminifera indices for Bahamian-type carbonate-bank limestones, Cablac Mountain, East Timor: Journal of Foraminiferal Research, v. 37, p. 248264.CrossRefGoogle Scholar
Hallam, A., 1991, Why was there a delayed radiation after the end-Paleozoic extinctions?: Historical Biology, v. 5, p. 257262.10.1080/10292389109380405CrossRefGoogle Scholar
Hallam, A., and Wignall, P.B., 1997, Mass Extinctions and Their Aftermath: Oxford, Oxford University Press, 320 p.Google Scholar
Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., de Graciansky, P.-C., and Vail, P.R., 1998, Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins, in de Graciansky, P.-C., Hardenbol, J., Jacquin, T., and Vail, P.R., eds., Mesozoic and Cenozoic Sequence Stratigraphy of European Basins: SEPM (Society for Sedimentary Geology), Special Publication 60, p. 313.Google Scholar
He, Y., 1984, Middle Triassic Foraminifera, from central and southern Guizhou, China: Acta Palaeontologica Sinica, v. 23, p. 420431. [in Chinese with English summary]Google Scholar
He, Y., 1988, Early and Middle Triassic Foraminifera from Jiangsu and Anhui provinces, China: Acta Micropalaeontologica Sinica, v. 5, p. 8592. [in Chinese with English summary]Google Scholar
He, Y., 1993, Triassic Foraminifera from northeast Sichuan and south Shaanxi, China: Acta Palaeontologica Sinica, v. 33, p. 170187. [in Chinese with English summary]Google Scholar
He, Y., and Cai, L.Q., 1991, Middle Triassic Foraminifera from Tiandong Depression, Baise Basin, Guangxi, China: Acta Palaeontologica Sinica, v. 30, p. 212230. [in Chinese with English Summary]Google Scholar
He, Y., and Wang, L., 1990, Triassic Foraminifera from Yushu region, Qinghai, China, in, Qinghai Institute of Geological Science & Nanjing Institute of Geology and Palaeontology, Academia Sinica, eds., Devonian–Triassic Stratigraphy and Palaeontology from Yushu Region of Qinghai, China: Nanjing, Nanjing University Press, v. 1, p. 5996. [in Chinese with English summary]Google Scholar
He, Y., and Yue, Z.L., 1987, Triassic foraminifera from Maantang of Jiangyou, Sichuan, China: Bulletin of the Nanjing Institute of Geology and Palaeontology, Academia Sinica, v. 12, p. 191230. [in Chinese with English summary]Google Scholar
Hips, K., 1996, The biostratigraphic significance of the Cyclogyra-Rectocornuspira association (Foraminifera; Early Triassic): data from the Agglatek Mountains (northeastern Hungary): Neues Jahrbuch für Geologie und Paläontologie-Monatshefte, v. 7, p. 439451.10.1127/njgpm/1996/1996/439CrossRefGoogle Scholar
Ho, Y., 1959, Triassic Foraminifera from the Chialingkiang Limestone of south Szechuan: Acta Palaeontologica Sinica, v. 7, p. 387418. [in Chinese with English summary]Google Scholar
Hohenegger, J., and Piller, W., 1977, Die Stellung der Involutinidae Bütchli und Spirillinidae Reuss im System der Foraminiferen: Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1977, p. 407418.Google Scholar
Insalaco, E., Virgone, A., Courme, B., Gaillot, J., Kamali, M., Moallemi, A., Loftpour, M., and Monibi, S., 2006, Upper Dalan Member and Kangan Formation between the Zagros Mountains and offshore Fars, Iran: depositional system, biostratigraphy and stratigraphic architecture: Geoarabia, v. 11, p. 75176.CrossRefGoogle Scholar
Ivanova, D., and Kołodziej, B., 2010, Late Jurassic–Early Cretaceous foraminifera from Štramderk-type limestones, Polish Outern Carpathians: Studia Universitatis Babeş-Bolyai, Geologia, v. 55, p. 331.10.5038/1937-8602.55.2.1CrossRefGoogle Scholar
Jin, Y.G., Wang, Y., Wang, W., Shang, Q.H., Cao, C.Q., and Erwin, D.H., 2000, Pattern of marine mass extinction near the Permian-Triassic boundary in south China: Science, v. 289, p. 432436.10.1126/science.289.5478.432CrossRefGoogle ScholarPubMed
Kaiho, K., Kajiwara, Y., Chen, Z.Q., and Gorjan, P., 2006, A sulfur isotope event at the end of the Permian: Chemical Geology, v. 235, p. 3347.CrossRefGoogle Scholar
Kamoun, F., Peybernès, B., Martini, R., Zaninetti, L., Vila, J.-M., Trigui, A., and Rigane, A., 1998, Associations de foraminifères benthiques dans les sequences de depot du Trias moyen?—supérieur de l'Atlas Tunisien central et méridional: Geobios, v. 31, p. 703714.10.1016/S0016-6995(98)80104-6CrossRefGoogle Scholar
Kauffman, E.G., and Harries, P.J., 1996, The importance of crisis progenitors in recovery from mass extinction, in Hart, M.B., ed., Biotic Recovery from Mass Extinction Events: Geological Society, London, Special Publication 102, p. 1539.Google Scholar
Kelley, B.M., Lehrmann, D.J., Yu, M., Jost, A.B., Meyer, K.M., Lau, K.V., Altıner, D., Li, X., Minzoni, M., Schaal, E.K., and Payne, J.L., 2020, Controls on carbonate platform architecture and reef recovery across the Paleozoic to Mesozoic transition: a high-resolution analysis of the Great Bank of Guizhou: Sedimentology, v. 67, p. 31193151.Google Scholar
Kidder, D.L., and Worsley, T.R., 2004, Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 203, p. 207237.CrossRefGoogle Scholar
Knoll, A.H., Bambach, R.K., Payne, J.L., Pruss, S., and Fischer, W.W., 2007, Paleophysiology and end-Permian mass extinction: Earth and Planetary Science Letters, v. 256, p. 295313.10.1016/j.epsl.2007.02.018CrossRefGoogle Scholar
Kobayashi, F., 1996, Middle Triassic (Anisian) foraminifers from the Kaizawa Formation, southern Kanto Mountains, Japan: Transactions and Proceedings of the Palaeontological Society of Japan, N. S. 183, p. 528539.Google Scholar
Kobayashi, F., Martini, R., and Zaninetti, L., 2005, Anisian foraminifers from allochthonous limestones of the Tanoura Formation (Kurosegawa Terrane, West Kyushu, Japan): Geobios, v. 38, p. 751763.10.1016/j.geobios.2004.06.004CrossRefGoogle Scholar
Kobayashi, F., Martini, R., Rettori, R., Zaninetti, L., Ratanasthien, B., Saegusa, H., and Nakaya, H., 2006, Triassic foraminifers of the Lampang Group (Northern Thailand): Journal of Asian Earth Sciences, v. 27, p. 312325.CrossRefGoogle Scholar
Kochansky-Devidé, V., and Pantić, S., 1966, Meandrospira in der Unteren und Mittleren Trias sowie einige begleitende Fossilien in den Dinariden: Geoloski Vjesnik, v. 19, p. 1528.Google Scholar
Koehn-Zaninetti, L., 1968, Les foraminifères du Trias de la region de l'Almtal (Salzkammergut, Haute-Autriche), Texte condensé: Université de Genève, Thèse No. 1467, Edition Médecine et Hygiène, 14 p.Google Scholar
Koehn-Zaninetti, L., 1969, Les foraminifères du Trias de la région de l'Almtal (Haute-Autriche): Jahrbuch der Geologischen Bundesanstalt, Special Volume 14, p. 1155.Google Scholar
Kolar-Jurkovšek, T., Jurkovšek, B., Nestell, G.P., and Aljinović, D., 2018, Biostratigraphy and sedimentology of upper Permian and Lower Triassic strata at Mosore, western Slovenia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 490, p. 3854.10.1016/j.palaeo.2017.09.013CrossRefGoogle Scholar
Korchagin, O.A., 2008, Foraminifers and stratigraphy of the Karatash Group (Lower Triassic–middle Anisian), the southeastern Pamir: Stratigraphy and Geological Correlation, v. 16, p. 248256.CrossRefGoogle Scholar
Korchagin, O.A., 2011, Foraminifers in the Global Stratotype (GSSP) of the Permian-Triassic boundary (Bed 27, Meishan, South China): Stratigraphy and Geological Correlation, v. 19, p. 160172.10.1134/S0869593811020055CrossRefGoogle Scholar
Korngreen, D., and Benjamini, C., 2006, Foraminiferal assemblage-based biostratigraphy and correlation of the Triassic of northern Israel: Israel Journal of Earth Sciences, v. 55, p. 209235.CrossRefGoogle Scholar
Korngreen, D., Orlov-Labkovsky, O., Bialik, O., and Benjamini, C., 2013, The Permian–Triassic transition in the central coastal plain of Israel (North Arabian plate margin), David 1 borehole: Palaios, v. 28, p. 491508.10.2110/palo.2012.p12-042rCrossRefGoogle Scholar
Kotljar, G.V., Zakharov, Yu.D., Koczyrkevica, B.V., Chedija, L.O., Vuks, G.P., and Guseva, E.A., 1984, Evolution of the Latest Permian Biota—Djulfian and Dorashamian Regional Stages in the USSR: Leningrad, Izdatel'stvo ‘Nauka,’ 199 p. [In Russian]Google Scholar
Krainer, K., and Vachard, D., 2011, The Lower Triassic Werfen Formation of the Karawanken Mountains (southern Austria) and its disaster survivor microfossiles, with emphasis on Postcladella n. gen. (Foraminifera, Miliolata, Cornuspirida): Revue de Micropaléontologie, v. 54, p. 5985.CrossRefGoogle Scholar
Kristan, E., 1958, Neue namen für zwei Foraminiferengattungen aus dem Rhät: Verhandlungen der Geologischen Bundesanstalt, Wien, v. 1958, p. 114.Google Scholar
Kristan-Tollmann, E.,1960, Rotaliidea (Foraminifera) aus der Trias der Ostalpen, in Beiträge zur Mikropaläontologie der alpinen Trias: Jahrbuch Geologische Bundesanstalt, v. 5, p. 4778.Google Scholar
Kristan-Tollmann, E., 1962, Stratigraphisch wertvolle Foraminiferen aus Obertrias- und Liaskalken der voralpinen Fazies bei Wien: Erdöl-Zeitschrift, v. 1962, p. 228233.Google Scholar
Kristan-Tollmann, E., 1963, Entwicklungsreihen der Trias-Foraminiferen: Paläontologische Zeitschrift, v. 37, p. 147154.10.1007/BF02989607CrossRefGoogle Scholar
Kristan-Tollmann, E., 1964, Zur charakteristik triadischer mikrofaunen: Paläontologische Zeitschrift, v. 38, p. 6673.CrossRefGoogle Scholar
Kristan-Tollmann, E., 1983, Foraminiferen aus dem Oberanis von Leidapo bei Guiyang in Südchina: Mitteilungen der Österreichische Geologisch Gesellschaft, v. 76, p. 289323.Google Scholar
Kübler, J., and Zwingli, H., 1870, Die Foraminiferen des schweizerischen Jura: Winterthur, Steiner, p. 149.Google Scholar
Langer, W., 1968, Neue Miliolacea (Foram.) aus der mittleren Trias Kleinasiens: Senckenbergiana Lethaea, v. 49, p. 6673.Google Scholar
Lau, K.V., Maher, K., Altıner, D., Kelley, B.M., Kump, L.R., Lehrmann, D.J., Silva-Tamayo, J.C., Weaver, K.L., Yu, M., and Payne, J.L., 2016, Marine anoxia and delayed Earth System recovery after the end-Permian extinction: Proceedings of the National Academy of Sciences, v. 113, p. 23602365.10.1073/pnas.1515080113CrossRefGoogle ScholarPubMed
Lehrmann, D.J., 1993, Sedimentary Geology of the Great Bank of Guizhou: Birth, Evolution and Death of a Triassic Isolated Carbonate Platform, Guizhou Province, South China [PhD dissertation]: Lawrence, University of Kansas, 457 p.Google Scholar
Lehrmann, D.J., Wei, J.Y., and Enos, P., 1998, Controls on facies architecture of a large Triassic carbonate platform: the Great Bank of Guizhou, Nanpanjiang Basin, south China: Journal of Sedimentary Research, v. 68, p. 311326.10.2110/jsr.68.311CrossRefGoogle Scholar
Lehrmann, D.J., Payne, J.L., Enos, P., Montgomery, P., Wei, J., Yu, Y., Xiao, J., and Orchard, M., 2005, Field Excursion 2: Permian-Triassic boundary and a Lower-Middle Triassic boundary sequence on the Great Bank of Guizhou, Nanpanjiang Basin, southern Guizhou Province: Albertiana, v. 33, p. 169186.Google Scholar
Lehrmann, D.J., Ramezani, J., Bowring, S.A., Martin, M.W., Montgomery, P., Enos, P., Payne, J.L., Orchard, M.J., Hongmei, W., and Wei, J., 2006, Timing of recovery from the end-Permian extinction: geochronologic and biostratigraphic constraints from south China: Geology, v. 34, p. 10531056.10.1130/G22827A.1CrossRefGoogle Scholar
Lehrmann, D.J., Donghong, P., Enos, P., Minzoni, M., Ellwood, B.B., Orchard, M.J., Zhang, J., Wei, J., Dillett, P., Koenig, J., Steffen, K., Druke, D., Druke, J., Kessel, B., and Newkirk, T., 2007, Impact of differential tectonic subsidence on isolated carbonate platform evolution: Triassic of the Nanpanjiang Basin, south China: American Association of Petroleum Geologists Bulletin, v. 91, p. 287320.10.1306/10160606065CrossRefGoogle Scholar
Lehrmann, D.J., Stepchinski, L., Altıner, D., Orchard, M.J., Montgomery, P., Enos, P., Ellwood, B.B., Bowring, S.A., Ramezani, J., Wang, H., Wei, J., Yu, M., Griffiths, J.D., Minzoni, M., Schall, E.K., Li, X., Meyer, K.M., and Payne, J.L., 2015, An integrated biostratigraphy (conodonts and foraminifers) and chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental chemistry, carbon isotopes and geochronology) for the Permian–Upper Triassic strata of Guandao section, Nanpanjiang Basin, south China: Journal of Asian Earth Sciences, v. 108, p. 117135.10.1016/j.jseaes.2015.04.030CrossRefGoogle Scholar
Leischner, W., 1961, Zur Kenntnis der Mikrofauna und flora der Salzburger Kalkalpen: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 112, p. 147.Google Scholar
Leven, E.Ja., and Korchagin, O.A., 2001, Permian–Triassic biotic crisis and foraminifers: Stratigraphy and Geological Correlation, v. 9, p. 364372.Google Scholar
Limogni, P., Panzanelli-Fratoni, R., Ciarapica, G., Cirilli, S., Martini, R., Salvini-Bonnard, G., and Zaninetti, L., 1987, Turriglomina Zaninetti, n. gen., un nouveau nom pour ‘Turritellellamesotriasica Koehn-Zaninetti, 1968 (Foraminifère, Trias Moyen) avec remarque sur la presence de l'espèce dans le Ladinien de l'Apennin mériodinal: Archives des Sciences, Genève, v. 40, p. 1322.Google Scholar
Lin, J., 1987, Foraminifera, in Meng, F., and Zhang, Z., eds., Biostratigraphy of the Yangtze Gorge Area (4)—Triassic and Jurassic: Beijing, Geological Publishing House, p. 149157. [in Chinese with English summary]Google Scholar
Loeblich, A.R. Jr., and Tappan, H., 1946, New Washita Foraminifera: Journal of Paleontology, v. 20, p. 238258.Google Scholar
Loeblich, A.R. Jr., and Tappan, H., 1949, New Kansas Lower Cretaceous foraminifera: Journal of the Washington Academy of Sciences, v. 39, p. 9092.Google Scholar
Loeblich, A.R. Jr., and Tappan, H., 1964, Sarcodina chiefly ‘Thecamoebians’ and Foraminiferida, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part C, Protista: Boulder, Colorado and Lawrence, Kansas, Geological Society of America and University of Kansas Press, 900 p.Google Scholar
Loeblich, A.R., and Tappan, H., 1984, Suprageneric classification of the Foraminiferida (Protozoa): Micropaleontology, v. 30, p. 170.10.2307/1485456CrossRefGoogle Scholar
Luperto, E., 1963, Nuovo genere di Foraminifero nel Permiano di Abriola (Potenza): Bollettino della Società Paleontologica Italiana, v. 2, p. 8388.Google Scholar
Luperto, E., 1965, Foraminiferi del ‘Calcare di Abriola’ (Potenza): Bollettino della Società Paleontologica Italiana, v. 4, p. 161207.Google Scholar
Lys, M., and Marcoux, J., 1978, Les niveaux du Permien supérieur des Nappes d'Antalya (Taurides occidentales, Turquie): Compte Rendu Hebdomadaire des Séances de l'Academie des Sciences, Paris, sér. D, v. 286, p. 14171420.Google Scholar
Mamet, B.L., and Pinard, S., 1992, Note sure la taxonomie des petits foraminifères du Paléozoique supérieur: Bulletin de la Société belge de Géologie, v. 99, p. 373397.Google Scholar
Marquez, L., 2005, Foraminiferal fauna recovered after the late Permian extinctions in Iberia and the westernmost Tethys area: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 229, p. 137157.CrossRefGoogle Scholar
Martini, R., Vachard, D., and Zaninetti, L., 1995, Pilammina sulawesiana, n. sp. (Ammodiscidae, Pilammininae, n. subfam.), a new foraminifer from Upper Triassic reefal facies in E Sulawasi (Kolonodale area, Indonesia): Revue de Paléobiologie, v. 14, p. 455460.Google Scholar
Martini, R., Rettori, R., Urošević, D., and Zaninetti, L., 1995, Le genre Piallina Rettori et Zaninetti (Foraminifère) dans les calcaires à Turriglomines du Trias (Canien) de Serbie Orientale (Domaine Carpatho-Balkanique): Revue de Paléobiologie, v. 14, p. 411415.Google Scholar
Martini, R., Zaninetti, L., Cornée, J.-J., Villeneuve, M., Tran, N., and Ta, T.T., 1998, Découverte de foraminifères du Trias dans les calcaires de la région de Ninh Binh (Nord-Vietnam): Comptes Rendus de l'Academie des Sciences, Sciences de la Terre and de Planètes/Earth and Planetary Sciences, v. 326, p. 113119.Google Scholar
Maurer, F., Rettori, R., and Martini, R., 2008, Triassic stratigraphy, facies and evolution of the Arabian shelf in the northern United Arab Emirates: International Journal of Earth Sciences, v. 97, p. 765784.10.1007/s00531-007-0194-yCrossRefGoogle Scholar
McGowan, A.J., 2004, Ammonoid taxonomic and morphologic recovery patterns after the Permian-Triassic: Geology, v. 32, p. 665668.10.1130/G20462.1CrossRefGoogle Scholar
Michalík, J., Masaryk, P., Lintnerová, O., Soták, J., Jendrejáková, O., Papšová, J., and Buček, S., 1993, Facies, paleogeography and diagenetic evolution of the Ladinian/Carnian Veterlín Reef Complex, Malé Karpaty Mts. (Western Carpathians): Geologica Carpathica, v. 44, p. 1734.Google Scholar
Mikhalevich, V.I., 1980, Systematics and evolution of Foraminifera in the light of new data on their cytology and ultrastructure: Trudy Zoologicheskogo Instituta, Akademiya Nauk SSSR, v. 94, p. 4261. [in Russian]Google Scholar
Mikhalevich, V.I., 1993, New higher taxa of the subclass Nodosariata (Foraminifera): Zoosystematica Rossica, v. 2, p. 58.Google Scholar
Misik, M., 1971, Aeolisaccus tintinniformis n. sp., from the Triassic of the West Carpathian Mountains: Geologica Carpathica, v. 22, p. 169172.Google Scholar
Miyahigashi, A., Hara, H., Hisada, K.-I., Nakano, N., Charoentitirat, T., Charusiri, P., Khamphoveng, K., Martini, R., and Ueno, K., 2017, Middle Triassic foraminifers from northern Laos and their paleobiogeographic significance: Geobios, v. 50, p. 441451.10.1016/j.geobios.2017.09.004CrossRefGoogle Scholar
Mohtat-Aghai, P., and Vachard, D., 2005, Late Permian foraminiferal assemblages from the Hambast region (central Iran) and their extinctions: Revista Española de Micropaleontologia, v. 37, p. 205227.Google Scholar
Muttoni, G., Kent, D.V., Meço, S., Nicora, A., Gaetani, M., Balini, M., Germani, D., and Rettori, R., 1996, Magnetobiostratigraphy of the Spathian to Anisian (Lower to Middle Triassic) Kçira section, Albania: Geophysical Journal International, v. 127, p. 503514.CrossRefGoogle Scholar
Muttoni, G., Kent, D.V., Meço, S., Balini, M., Nicora, A., Rettori, R., Gaetani, M., and Krystyn, L., 1998, Towards a better definition of the Middle Triassic magnetostratigraphy and biostratigraphy in the Tethyan Realm: Earth and Planetary Science Letters, v. 164, p. 285302.10.1016/S0012-821X(98)00215-5CrossRefGoogle Scholar
Nakazawa, K., Kapoor, H.M., Ishii, K.-i., Bando, Y., Okimura, Y., and Tokuoka, T., 1975, The Upper Permian and the Lower Triassic in Kashmir, India: Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, v. 42, p. 1106.Google Scholar
Neri, C., and Pasini, M., 1985, A mixed fauna at the Permian-Triassic boundary, Tesero section, Western Dolomites (Italy): Bollettino della Società Paleontologica Italiana, v. 23, p. 113117.Google Scholar
Nestell, G.P., Kolar-Jurkovšek, T., Jurkovšek, B., and Aljinović, D., 2011, Foraminifera from the Permian–Triassic transition in western Slovenia: Micropaleontology, v. 57, p. 197222.Google Scholar
Nestell, G.P., Nestell, M.K., Ellwood, B.B., Wardlaw, B.R., Basu, A.R., Ghosh, N., Lan, L.T.P., Rowe, H.D., Hunt, A., Tomkin, J.H., and Ratcliffe, K.T., 2015, High influx of carbon in walls of agglutinated foraminifers during the Permian–Triassic transition in global oceans: International Geology Review, v. 57, p. 411427.CrossRefGoogle Scholar
Neumayr, M., 1887, Die natürlichen Verwandtschaftverhältnisse der schalentragenden Foraminiferen: Sitzungsberichte der kaiserliche Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse, v. 95, p. 156186.Google Scholar
Nützel, A., 2005, Recovery of gastropods in the Early Triassic: Comptes Rendus Palevol, v. 4, p. 501515.CrossRefGoogle Scholar
Oberhauser, R., 1957, Ein Vorkommen von Trocholina und Paratrocholina in der ostalpinen Trias: Jahrbuch der Geologischen Bundesanstalt Sonderband, v. 100, p. 257267.Google Scholar
Oberhauser, R., 1960, Foraminiferen und mikrofossilen ‘incertae sedis’ der ladinischen and karnischen Stufe der Trias aus den Ostalpen und aus Persien: Jahrbuch der Geologischen Bundesanstalt Sonderband 5, p. 546.Google Scholar
Oberhauser, R., 1964, Zur Kenntnis der Foraminiferengattungen Permodiscus, Trocholina und. Triasina in der alpinen Trias und ihre Einordnung zu den Archaedisciden: Verhandlungen der Geologischen Bundesanstalt, v. 1964, p. 196210.Google Scholar
Oberhauser, R., 1967, Zum Vorkommen der Foraminiferengattung Austrocolomia in der ostalpinen Trias: Verhandlungen der Geologischen Bundesansalt, Wien, 1967, p. 193199.Google Scholar
Okay, A.I., Altıner, D., and Kiliç, A.M., 2015, Triassic limestone, turbidites and serpentinite—the Cimmeride orogeny in the Central Pontides: Geological Magazine, v. 152, p. 460479.CrossRefGoogle Scholar
Okuyucu, C., Ivanova, D., Bedi, Y., and Ergen, A., 2014, Discovery of an earliest Triassic, post extinction foraminiferal assemblage above the Permian-Triassic boundary, Strandzha nappes, north-west Turkey: Geological Quarterly, v. 58, p. 117124.Google Scholar
Oravecz-Scheffer, A., 1971, Representatives of Miliolacea superfamily (Foraminifera) from Bakonyszucs, no.1 drilling in Carnian sediments: Evi Jelent magy K foldt Intez (1968), p. 89105.Google Scholar
Orchard, M.J., 2007, Conodont diversity and evolution through the latest Permian and Early Triassic upheavals: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 252, p. 93117.10.1016/j.palaeo.2006.11.037CrossRefGoogle Scholar
Orovecz-Scheffer, A., 1983, Foraminiferal stratigraphy of the Triassic in the Transdanubian Central Range: Acta Geologica Hungarica, v. 26, p. 213226.Google Scholar
Orovecz-Scheffer, A., 1987, Trias foraminifers of the Transdanubian Central Range: Geologica Hungarica, serie Palaeontologica, v. 50, p. 1331.Google Scholar
Pantić, S., 1965, Pilammina densa, n. gen., n. sp. and other Ammodiscidae from the Middle Triassic in Crmnice (Montenegro): Geoloski Vjesnik, v.18, p. 189193.Google Scholar
Parker, W.K., and Jones, T.R., 1859, On the nomenclature of the Foraminifera. II. On the species enumerated by Walker and Montagu: Annals and Magazine of Natural History, v. 4, ser. 3, p. 333351.CrossRefGoogle Scholar
Pasini, M., 1985, Biostratigrafia con i foraminiferi del limite Formazione a Bellerophon / Formazione di Werfen fra Recora e la Val Badia (Alpi Meridionali): Rivista Italiana di Paleontologia e Stratigrafia, v. 90, p. 481510.Google Scholar
Pawlowski, J., Holzmann, M., and Tyszka, J., 2013, New supraordinal classification of Foraminifera: molecules meet morphology: Micropaleontology, v. 100, p. 110.CrossRefGoogle Scholar
Payne, J.L., 2005, Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval: Paleobiology, v. 31, p. 269290.CrossRefGoogle Scholar
Payne, J.L., and Clapham, M.E., 2012, End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century?: Annual Review of Earth and Planetary Sciences, v. 40, p. 89111.CrossRefGoogle Scholar
Payne, J.L., and Kump, L.R., 2007, Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations: Earth and Planetary Science Letters, v. 256, p. 264277.CrossRefGoogle Scholar
Payne, J.L., Lehrmann, D.J., Wei, J., Orchard, M.J., Schrag, D.P., and Knoll, A.H., 2004, Large perturbations of the carbon cycle during recovery from the end-Permian extinction: Science, v. 305, p. 506509.CrossRefGoogle ScholarPubMed
Payne, J.L., Lehrmann, D.J., Wei, J., and Knoll, A.H., 2006, The pattern and timing of biotic recovery from the end-Permian extinction on the Great Bank of Guizhou, Guizhou Province, China: Palaios, v. 21, p. 6385.CrossRefGoogle Scholar
Payne, J.L., Summers, M., Rego, B.L., Altıner, D., Wei, J., Yu, M., and Lehrmann, D.J., 2011, Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: implications for tempo and mode of biotic recovery from the end-Permian mass extinction: Paleobiology, v. 37, p. 409425.10.1666/08082.1CrossRefGoogle Scholar
Penn, J.L., Deutsch, C., Payne, J.L., and Sperling, E.A., 2018, Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction: Science, v. 362, eaat1327. https://doi.org/10.1126/science.aat1327.CrossRefGoogle ScholarPubMed
Piller, W.E., 1983, Remarks on the suborder Involutinina Hohenegger and Piller, 1977: The Journal of Foraminiferal Research, v. 13, p. 191201.CrossRefGoogle Scholar
Plummer, H.J., 1930, Calcareous foraminifera in the Brownwood shale near Bridgeport, Texas: University of Texas Bulletin, v. 3019, p. 521.Google Scholar
Plummer, H.J., 1945, Smaller foraminifera in the Marble Falls, Smithwick, and lower Strawn strata around the Llano uplift in Texas: University of Texas Bulletin, v. 4401, p. 209271.Google Scholar
Powell, J.H., Stephenson, M.H., Nicora, A., Rettori, R., Borlengi, L.M., and Perri, M.C., 2016, The Permian-Triassic boundary, Dead Sea, Jordan: transitional alluvial to marine depositional sequences and biostratigraphy: Rivista Italiana di Paleontologia e Stratigrafia, v. 122, p. 2340.Google Scholar
Powell, J.H., Nicora, A., Perri, M.C., Rettori, R., Posenato, R., Stephenson, M.H., Masri, A., Borlenghi, L.M., and Gennari, V., 2019, Lower Triassic (Induan to Olenekian) conodonts, Foraminifera and bivalves from the Al Mamalik area, Dead Sea, Jordan: constraints on the P-T boundary: Rivista Italiana di Paleontologia e Stratigrafia, v. 125, p. 147181.Google Scholar
Powers, C.M., and Pachut, J.F., 2008, Diversity and distribution of Triassic bryozoans in the aftermath of the end-Permian mass extinction: Journal of Paleontology, v. 82, p. 362371.10.1666/06-131.1CrossRefGoogle Scholar
Premoli Silva, I., 1964, Citaella iulia n. gen., n. sp. del Trias inferiore della Carnia: Rivista Italiana di Paleontologia, v. 70, p. 657670.Google Scholar
Premoli Silva, I., 1971, Foraminiferi Anisici della regione Giudicariense (Trento): Rivista Italiana di Paleontologia, v. 77, p. 303374.Google Scholar
Rampino, M.R., and Adler, A.C., 1998, Evidence for abrupt latest Permian mass extinction of Foraminifera: results of tests for the Signor-Lipps effect: Geology, v. 26, p. 415418.2.3.CO;2>CrossRefGoogle Scholar
Raup, D.M., and Sepkoski, J.J. Jr., 1982, Mass extinctions in the marine fossil record: Science, v. 215, p. 15011503.CrossRefGoogle ScholarPubMed
Rego, B.L., Wang, S.C., Altıner, D., and Payne, J.L., 2012, Within- and among-genus components of size evolution during mass extinction, recovery, and background intervals: a case study of late Permian through Late Triassic foraminifera: Paleobiology, v. 38, p. 627643.10.1666/11040.1CrossRefGoogle Scholar
Resch, W., 1979, Zur Fazies-Abhängigkeit alpine Trias-Foraminiferen: Jahrbuch der Geologischen Bundesanstalt, v. 122, p. 181249.Google Scholar
Rettori, R., 1994, Replacement name Hoyenella, gen. n. (Triassic Foraminiferida, Miliolina) for Glomospira sinensis Ho, 1959: Bollettino della Società Paleontologica Italiana, v. 33, p. 341343.Google Scholar
Rettori, R., 1995, Foraminiferi del Trias inferiore e medio della Tetide: Revisione tassonomica, stratigrafia ed interpretazione filogenetica: Université de Genève, Publications du Département de Géologie et Paléontologie 18, 147 p.Google Scholar
Rettori, R., Zaninetti, L., Martini, R., and Vachard, D., 1993, Piallina tethydis gen. et sp. nov. (Foraminiferida) from the Triassic (Carnian) of the Kocaeli Peninsula, Turkey: Journal of Micropaleontology, v. 12, p. 170174.CrossRefGoogle Scholar
Rettori, R., Angiolini, L., and Muttoni, G., 1994, Lower and Middle Triassic Foraminifera from the Eros Limestone, Hydra Island, Greece: Journal of Micropaleontology, v. 13, p. 2546.CrossRefGoogle Scholar
Rettori, R., Loriga, C., and Neri, C., 1998, Lower Carnian foraminifers from the type locality of the Calcare del Predil (Raibl Group, northeastern Italy): Rivista Italiana di Paleontologia e Stratigrafia, v. 104, p. 369380.Google Scholar
Reuss, A.E., 1862, Entwurf einer systematischen Zusammenstellung der Foraminiferen: Sitzungberichte der Kaiserlichen Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Classe, v. 44, p. 355396.Google Scholar
Rhumbler, L., 1895, Entwurf eines natürlichen Systems der Thalamophoren: Nachrichten der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, v. 1895, p. 5198.Google Scholar
Rhumbler, L., 1913, Die Foraminiferen (Thalamophoren) der Plankton-Expedition, Zweiter Teil, Systematik: Arrhabdamminida, Arammodislida und Arnodosammidia: Ergebnisse der Plankton-Expedition der Humboldt-Stiftung: Kiel and Leipzig, Verlag von Lipsius & Tischer, v. 3, p. 332476.Google Scholar
Rigaud, S., and Blau, J., 2016, New robertinid foraminifers from the Early Jurassic of Adnet, Austria and their evolutionary importance: Acta Palaeontologica Polonica, v. 61, p. 721734.10.4202/app.00250.2016CrossRefGoogle Scholar
Rigaud, S., Martini, R., and Rettori, R., 2012, Parvalamellinae, a new subfamily for Triassic glomospiroid Involutinidae: Journal of Foraminiferal Research, v. 42, p. 245256.10.2113/gsjfr.42.3.245CrossRefGoogle Scholar
Rigaud, S., Martini, R., and Vachard, D., 2015, Early evolution and new classification of the Order Robertinida (Foraminifera): Journal of Foraminiferal Research, v. 45, p. 328.10.2113/gsjfr.45.1.3CrossRefGoogle Scholar
Risso, A., 1826–1827, Histoire Naturelle des Principales Productions de l'Europe Méridionale et Particulièrement de Celles des Environs de Nice et des Alpes Maritimes: Paris, Levrault, p. 1480.Google Scholar
Rodland, D.L., and Bottjer, D.J., 2001, Biotic recovery from the end-Permian mass extinction: behavior of the inarticulate brachiopod Lingula as a disaster taxon: Palaios, v. 16, p. 95101.2.0.CO;2>CrossRefGoogle Scholar
Rossignol, C., Bourquin, S., Hallot, E., Poujol, M., Debard, M.-P., Martini, R., Villeneuve, M., Cornée, J.-J., Brayard, A., and Roger, F., 2018, The Indonesian orogeny: a perspective from sedimentary archives of North Vietnam: Journal of Asian Earth Sciences, v. 158, p. 352380.CrossRefGoogle Scholar
Rychliński, T., Ivanova, D.K., Zaglarz, P., and Bucur, I.I., 2013, Benthic foraminifera and calcareous algae from the Anisian–Norian succession in the Tatras (Poland and Slovakia): new data from High-Tacotric and Križna units: Studia Universitatis Babes-Bolyai, Geologia, v. 58, p. 2143.10.5038/1937-8602.58.1.3CrossRefGoogle Scholar
Rzehak, A., 1885, Bemerkungen über einige Foraminiferen der Oligocän Formation: Verhandlungen des Naturforschenden Vereins in Brünn, v. 23, p. 123129.Google Scholar
Şahin, N., Altıner, D., and Ercengiz, M.B., 2012, Discovery of Middle Permian volcanism in the Antalya nappes, Southern Turkey: tectonic significance and global meaning: Geodinamica Acta, v. 25, p. 286304.CrossRefGoogle Scholar
Saidova, K.M., 1981, On an up-to-date system of supraspecific taxonomy of Cenozoic benthonic Foraminifera: Moscow, Institut Okeanologii P. P. Shirshova, Akademiya Nauk SSSR, 73 p. [in Russian]Google Scholar
Salaj, J., 1969, Essai de zonations dans le Trias des Carpates occidentals d'apres les foraminifères: Geologické Práce, v. 48, p. 123128.Google Scholar
Salaj, J., 1978, Contribution à la microbiostratigraphie du Trias des Carpates occidentals Tchécoslovaques: Actes du VI Colloque de Micropaléontologie, Tunis, 1974, Annales des Mines et de la Géologie, Tunis, v. 28, p. 103127.Google Scholar
Salaj, J., Biely, A., and Bistricky, J., 1967, Trias-Foraminiferen in den Westkarpaten: Geologické Práce, v. 42, p. 119136.Google Scholar
Salaj, J., Borza, K., and Samuel, O., 1983, Triassic foraminifers of the west Carpathians. Geologický Ustav Dionýza Stúra, Bratislava, 213 p.Google Scholar
Salaj, J., Trifonova, E., and Gheorghian, D., 1988, A biostratigraphic zonation based on benthic Foraminifera in the Triassic deposits of the Carpatho-Balkans: Revue de Paléobiologie, Volume Spéciale 2, Benthos’ 86, p. 153159.Google Scholar
Schultze, M.S., 1854, Über den Organismus der Polythalamien (Foraminiferen), nebs Bermerkungen über die Rhizopoden im Allgemeinen: Leipzig, Wilhelm Engelmann, 68 p.Google Scholar
Schwager, C., 1877, Quadro del proposto sistema di classificazione dei foraminiferi con guscio: Bollettino del R. Comitato Geologico d'Italia, v. 8, p. 1827.Google Scholar
Sellier de Civrieux, J.M., and Dessauvagie, T.F.J., 1965, Reclassification de quelques Nodosariidae, particulièrement du Permien au Lias: Maden Tetkik ve Arama Enstitüsü Yayınlarından (Mining Research and Exploration, Institute of Turkey Publication), n. 124, p. 1178.Google Scholar
Senowbari-Daryan, B., Zühlke, R., Bachtädt, T., and Flügel, E., 1993, Anisian (Middle Triassic) buildups of the Northern Dolomites (Italy): the recovery of reef communities after the Permian/Triassic crisis: Facies, v. 28, p. 181256.CrossRefGoogle Scholar
Sepkoski, J.J. Jr., 1981, A factor analytic description of the Phanerozoic marine fossil record: Paleobiology, v. 7, p. 3653.CrossRefGoogle Scholar
Sepkoski, J.J. Jr., 1984, A kinetic model of Phanerozoic diversity. III. Post-Paleozoic families and mass extinctions: Paleobiology, v. 10, p. 246267.CrossRefGoogle Scholar
Septfontaine, M., 1988, Vers une classification évolutive des Lituolidés (Foraminifères) Jurassiques en milieu de plate-forme carbonate: Revue de Paléobiologie, Volume Spéciale 2, Benthos’ 86, p. 229256.Google Scholar
Sheng, J.-Z., Chen, C.-Z., Wang, Y.-G., Rui, L., Liao, Z.-T., Bando, Y., Ishii, K.-I., Nakazawa, K., and Nakamura, K., 1984, Permian-Triassic boundary in Middle and Eastern Tethys: Journal of the Faculty of Science, Hakkaido University, ser. 4, v. 21, p. 133181.Google Scholar
Song, H., Tong, J.-N., Zhang, K.-X., Wang, Q.-X., and Chen, Z.-Q., 2007, Foraminiferal survivors from the Permian-Triassic mass extinction in the Meishan section, south China: Palaeoworld, v. 16, p. 105119.CrossRefGoogle Scholar
Song, H., Tong, J., Chen, Z.Q., Yang, H., and Wang, Y., 2009, End-Permian mass extinction of foraminifers in the Nanpanjiang Basin, south China: Journal of Paleontology, v. 83, p. 718738.CrossRefGoogle Scholar
Song, H., Wignall, P.B., Chen, Z.Q., Tong, J., Bond, D.P.G., Lai, X., Zhao, X., Jiang, H., Yan, C., Niu, Z., Chen, J., Yang, H., and Wang, Y., 2011a, Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction: Geology, v. 39, p. 739742.CrossRefGoogle Scholar
Song, H., Tong, J., and Chen, Z.Q., 2011b, Evolutionary dynamics of the Permian–Triassic foraminifer size: evidence for Lilliput effect in the end-Permian mass extinction and its aftermath: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 308, p. 98110.CrossRefGoogle Scholar
Song, H., Wignall, P.B., Tong, J., and Yin, H., 2013, Two pulses of extinction during the Permian-Triassic crisis: Nature Geoscience, v. 6, p. 5256.CrossRefGoogle Scholar
Song, H., Wignall, P.B., Chu, D., Tong, J., Sun, Y., Song, H., Weihong, H., and Tian, L., 2014, Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath: Scientific Reports, Article 4: 4132, p. 17.Google ScholarPubMed
Song, H., Wang, L., Tong, J., Chen, J., Tian, L., Song, H., and Chu, D., 2015, Recovery dynamics of foraminifers and algae following the Permian-Triassic extinction in Qingyan, south China: Geobios, v. 48, p. 7183.CrossRefGoogle Scholar
Song, H., Tong, J., Wignall, P.B., Luo, M., Tian, L., Song, H., Huang, Y., and Chu, D., 2016, Early Triassic disaster and opportunistic foraminifers in south China: Geological Magazine, v. 153, p. 298315.CrossRefGoogle Scholar
Song, H., Wignall, P.B., and Dunhill, A.M., 2018, Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction: Science Advances, v. 4, eaat5091. https://doi.org/10.1126/sciadv.aat5091.CrossRefGoogle ScholarPubMed
Stampfli, G., Zaninetti, L., Brönnimann, P., Jenny-Deshusses, C., and Stampfli-Vuille, B., 1976, Trias de l'Elburz oriental, Iran. Stratigraphie, sédimentologie, micropaleontology: Rivista Italiana di Paleontologia, v. 82, p. 467500.Google Scholar
Stanley, S.M., 2009, Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions: Proceedings of the National Academy of Sciences, v. 106, p. 1526415267.10.1073/pnas.0907992106CrossRefGoogle ScholarPubMed
Suleymanov, I.S., 1973, Some questions on the systematic of the family Verneuilinidae Cushman 1927 in connection with conditions of the habitat: Dokladari Uzbekistan SSR, Fanlar Akademiyasining, Tashkent, v. 8, p. 35–36. [in Russian]Google Scholar
Sun, Y., Joachimski, M.M., Wignall, P.B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X., 2012, Lethally hot temperatures during the Early Triassic greenhouse: Science, v. 338, p. 366369.CrossRefGoogle ScholarPubMed
Sun, Y.D., Wignall, P.B., Joachimski, M.M., Bond, D.P.G., Grasby, S.E., Sun, S., Yan, C.B., Wang, L.N., Chen, Y.L., and Lai, X.L., 2015, High amplitude redox changes in the late Early Triassic of south China and the Smithian-Spathian extinction: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 427, p. 6278.CrossRefGoogle Scholar
Taraz, H., Golshani, F., Nakazawa, K., Shimizu, D., Bando, Y., Ishii, K.-I., Murata, M., Okimura, Y., Sakagami, S., Nakamura, K., and Tokuoka, T., 1981, The Permian and the Lower Triassic systems in Abadeh Region, Central Iran: Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, v. 47, p. 61133.Google Scholar
Théry, J.M., Vachard, D., and Dansart, E., 2007, Late Permian limestones and the Permian-Triassic boundary: new biostratigraphic, paleogeographical and geochemical data in Caucasus and Eastern Europe, in Álvaro, J.J., Aretz, M., Boulvain, F., Munnecke, A., Vachard, D., and Vennin, E., eds., Paleozoic Reefs and Bioaccumulations: Climatic and Evolutionary Controls: Geological Society, London, Special Publications 275, p. 255274.Google Scholar
Tian, L., Tong, J., Algeo, T., Song, H., Song, H., Chu, D., Shi, L., and Bottjer, D.J., 2014, Reconstruction of Early Triassic ocean redox conditions based on framboidal pyrite from the Nanpanjiang Basin, south China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 412, p. 6879.CrossRefGoogle Scholar
Tian, L., Tong, J., Xiao, Y., Benton, M.J., Song, H., Liang, L., Wu, K., Chu, D., and Algeo, T.J., 2018, Environmental instability prior to end-Permian mass extinction reflected in biotic and facies changes on shallow carbonate platforms of the Nanpanjiang Basin (south China): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 519, p. 2336.CrossRefGoogle Scholar
Tong, J., and Shi, G.R., 2000, Evolution of the Permian and Triassic Foraminifera in south China: Developments in Paleontology and Stratigraphy, v. 18, p. 291307.CrossRefGoogle Scholar
Trifonova, E., 1961, Upper Triassic Foraminifera from the surroundings of Kotel—the Eastern Balkan: Bulgarian Directorate for Geological Research, v. 12, p. 141170.Google Scholar
Trifonova, E., 1967, Some new Triassic Foraminifera in Bulgaria: Godishnik na Sofiyskiya Universitet, Sofia (Faculty of Geology and Geography), v. 60, p. 18.Google Scholar
Trifonova, E., 1978a, The Foraminifera zones and subzones of the Triassic in Bulgaria. I. Scythian and Anisian: Geologica Balcanica, v. 8, no. 3, p. 85104.Google Scholar
Trifonova, E., 1978b, Foraminifera zones and subzones of the Triassic in Bulgaria. II. Ladinian and Carnian: Geologica Balcanica, v. 8, no. 4, p. 4964.Google Scholar
Trifonova, E., 1978c, New Foraminifera species from the Lower and Middle Triassic in Bulgaria: Comptes Rendus de l'Académie Bulgare des Sciences, v. 31, p. 11511154.Google Scholar
Trifonova, E., 1992, Taxonomy of Bulgarian Triassic Foraminifera. I. Families Psammosphaeridae to Nodosinellidae: Geologica Balcanica, v. 22, p. 350.Google Scholar
Trifonova, E., 1993, Taxonomy of Bulgarian Triassic Foraminifera. II. Families Endothyriidae to Ophthalmidiidae: Geologica Balcanica, v. 23, p. 1966.Google Scholar
Trifonova, E., 1994, Taxonomy of Bulgarian Triassic Foraminifera. III. Families Spiroloculiniidae to Oberhauserelliidae: Geologica Balcanica, v. 24, p. 2170.Google Scholar
Twitchett, R.J., and Oji, T., 2005, Early Triassic recovery of echinoderms: Comptes Rendus Palevol, v. 4, p. 531542.CrossRefGoogle Scholar
Ueno, K., Miyahigashi, A., Kamata, Y., Kato, M., Charoentitirat, T., and Limruk, S., 2012, Geotectonic implications of Permian and Triassic carbonate successions in the Central Plain of Thailand: Journal of Asian Earth Sciences, v. 61, p. 3350.10.1016/j.jseaes.2012.04.015CrossRefGoogle Scholar
Ueno, K., Miyahigashi, A., and Martini, R., 2018, Taxonomic and nomenclatural justification from the Triassic meandrospiral foraminiferal genus Citaella Premoli Silva, 1964: Journal of Foraminiferal Research, v. 48, p. 6274.10.2113/gsjfr.48.1.62CrossRefGoogle Scholar
Ünal, E., Altıner, D., Yilmaz, I.Ö., and Özkan-Altıner, S., 2003, Cyclic sedimentation across the Permian-Triassic boundary (Central Taurides, Turkey): Rivista Italiana di Paleontologia e Stratigrafia, v. 109, p. 359376.Google Scholar
Urošević, D., 1977, Stratigraphic position of some foraminifers in Triassic sediments of the Carpatho-Balkanides: Geoloski Anali Balkanskogo Poluostrava, v. 41, p. 227231.Google Scholar
Urošević, D., 1988, Microfossils from the Triassic of the Inner Belt of the Yugoslavian Carpatho-Balkanides: Geološki anali Balkanskoga Poluostrva—Annales Géologiques de la Péninsule Balkanique, v. 52, p. 371379.Google Scholar
Vachard, D., 2016, Macroevolution and Biostratigraphy of Paleozoic Foraminifers: Stratigraphy and Timescales, First Edition, v. 1, p. 257323.Google Scholar
Vachard, D., 2018, Permian smaller foraminifers: taxonomy, biostratigraphy and biogeography, in Lucas, S.G., and Shen, S.Z., eds., The Permian Timescale: Geological Society, London, Special Publication 450, p. 205252.Google Scholar
Vachard, D., and Beckary, S., 1991, Algue et foraminifères bachkiriens des coal balls de la Mine Tosario (Truebano, Léon, Espagne): Revue de Paléobiologie, v. 10, p. 315357.Google Scholar
Vachard, D., and Fontaine, H., 1988, Biostratigraphic importance of Triassic Foraminifera and algae from South-East Asia: Revue de Paléobiologie, v. 7, p. 8798.Google Scholar
Vachard, D., and Razgallah, S., 1988, Importance phylogénétique d'un nouveau foraminifère endothyroide: Endoteba controversa n. gen. n. sp. (Permien du Jebel Tebega, Tunisie): Geobios, v. 21, p. 85811.10.1016/S0016-6995(88)80096-2CrossRefGoogle Scholar
Vachard, D., Martini, R., Rettori, R., and Zaninetti, L., 1994, Nouvelle classification de foraminifères endothyroïdes du Trias: Geobios, v. 27, p. 543557.CrossRefGoogle Scholar
Vachard, D., Gaillot, J., Vaslet, D., and Le Nindre, Y.-M., 2005, Foraminifers and algae from the Khuff Formation (late middle Permian–Early Triassic) of central Saudi Arabia: Geoarabia, v. 10, p. 137186.CrossRefGoogle Scholar
Vachard, D., Pille, L., and Gaillot, J., 2010, Paleozoic Foraminifera: systematics, palaeoecology and responses to the global changes: Revue de Micropaléontologie, v. 53, p. 209254.10.1016/j.revmic.2010.10.001CrossRefGoogle Scholar
Velić, I., 2007, Stratigraphy and paleobiogeography of Mesozoic benthic foraminifera of the Karst Dinarides (SE Europe): Geologica Croatica, v. 60, p. 1113.Google Scholar
Velledits, F., Péró, C., Blau, J., Senowbari-Daryan, B., Kovács, D., Piros, O., Pocsai, T., Szúgyi-Simon, H., Dumitrica, P., and Palfy, J., 2011, The oldest Triassic platform margin reef from the Alpine-Carpathian region (Aggtelek, NE Hungary): platform evolution, reefal biota and biostratigraphic framework: Rivista Italiana di Paleontologia e Stratigrafia, v. 117, p. 221268.Google Scholar
Vuks, V.J., 2007, Olenekian (Early Triassic) foraminifers of the Gorny Mangyshlak, Eastern Precaucasus and Western Caucasus: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 252, p. 8292.CrossRefGoogle Scholar
Wei, H., Shen, J., Scheopfer, S.D., Krystyn, L., Richoz, S., and Algeo, T.J., 2015, Environmental controls on marine ecosystem recovery following mass extinctions, with an example from the Early Triassic: Earth-Science Reviews, v. 149, p. 108135.10.1016/j.earscirev.2014.10.007CrossRefGoogle Scholar
Wendt, J., 1969, Foraminiferen “Riffe”in karnischen Hallstätter Kalk des Feuerkogels (Steiermark, Österreich): Paläontologische Zeitschrift, v. 43, p. 177193.CrossRefGoogle Scholar
Weynschenk, R., 1956, Aulotortus, a new genus of foraminifera from the Jurassic of Tyrol, Austria: Contributions from the Cushman Foundation for Foraminiferal Research, v. 7, p. 2628.Google Scholar
Wiesner, H., 1920, Zur systematik der Miliolidae: Zoologisches Anzeiger, v. 51, p. 1320.Google Scholar
Wignall, P.B., and Hallam, A., 1992, Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 93, p. 2146.CrossRefGoogle Scholar
Wignall, P.B., and Newton, R., 2003, Contrasting deep-water records from the upper Permian and Lower Triassic of South Tibet and British Columbia: evidence for a diachronous mass extinction: Palaios, v. 18, p. 153167.2.0.CO;2>CrossRefGoogle Scholar
Yang, H., Chen, Z.Q., Wang, Y., Tong, J., Song, H., and Chen, J., 2011, Composition and structure of microbialite ecosystems following the end-Permian mass extinction in south China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 308, p. 11128.CrossRefGoogle Scholar
Yin, H., Feng, Q., Lai, X., Baud, A., and Tong, J., 2007, The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary: Global and Planetary Change, v. 55, p. 120.CrossRefGoogle Scholar
Zaninetti, L. 1976, Les foraminifères du Trias. Essai de synthèse et correlation entre les domains mésogéens European et asiatique: Rivista Italiana de Paleontologia, v. 82, p. 1258.Google Scholar
Zaninetti, L., 1979, Gsollbergella, new name for the foraminiferal genus Agathamminoides Zaninetti, 1969: Notes du Laboratoire de Paléontologie de l'Université de Genève, v. 5, p. 73.Google Scholar
Zaninetti, L., 1984, Les Involutinidae (Foraminifères): proposition pour une subdivision: Revue de Paléobiologie, v. 3, p. 205207.Google Scholar
Zaninetti, L., and Brönnimann, P., 1969, Sur la presence d'un Foraminifère nouveau Ophthalmidium tori sp. n., dans le Carnien supérieur de Vénétie (Italie): Rivista Italiana di Paleontologia, v. 75, p. 705-724.Google Scholar
Zaninetti, L., and Brönnimann, P., 1975, Triassic Foraminifera from Pakistan: Rivista Italiana di Paleontologia, v. 81, p. 257280.Google Scholar
Zaninetti, L., and Dağer, Z., 1978, Biostratigraphie intégrée et paléoecologie du Trias de la peninsula de Kocaeli (Turquie): Eclogae Geologicae Helvetiae, v. 71, p. 85104.Google Scholar
Zaninetti, L., and Martini, R., 1993, Bispiranella et Orthotrinacria (Foraminifères, Trias), nouvelle description et regroupement dans la famille de Orthotrinacriidae (Milioliporacea): Bollettino della Società Paleontologica Italiana, v. 32, p. 385392.Google Scholar
Zaninetti, L., Brönnimann, P., Bozorgnia, F., and Huber, H., 1972a, Etude lithologique et micropaléontologique de la formation d'Elika dans la coupe d'Aruh, Alborz central, Iran septentrional: Archieves des Sciences, Genève, v. 25, p. 215249.Google Scholar
Zaninetti, L., Brönnimann, P., and Baud, A., 1972b, Essai de zonation d'après les Foraminifères dans l'Anisien moyen et supérieur des Préalpes medians rigides (Préalpes romandes, Suisse, et Préalpes du Chablais, France): Eclogae Geologicae Helvetiae, v. 65, p. 343353.Google Scholar
Zaninetti, L., Brönnimann, P., and Baud, A., 1972c, Microfacies particuliers et foraminifères nouveaux de l'Anisien supérieur de la coupe du Rothern (Préalpes medians rigides, Diemtigtal, Suisse): Mitteilung Gesellschaft des Geologie und Bergbaustudenten, Innsbruck, v. 21, p. 465498.Google Scholar
Zaninetti, L., Brönnimann, P., Huber, H., and Moshtaghian, A., 1978, Microfacies et microfaunes du Permien au Jurassique au Kuh-e Gahkum, Sud-Zagros, Iran: Rivista Italiana di Paleontologia, v. 84, p. 865896.Google Scholar
Zaninetti, L., Altıner, D., Dağer, Z., and Ducret, B., 1982, Les Milioliporidae (Foraminifères) dans le Trias supérieur à facies récifal du Taurus, Turquie. II. Microfaunes associées: Revue de Paléobiologie, v. 1, p. 105139.Google Scholar
Zaninetti, L., Ciarapica, G., Martini, R., Salvini-Bonnard, G., and Rettori, R., 1987a, Turriglomina scandonei, n. sp., dans les calcaires recifaux du Trias Moyen (Ladinien) en Apennin meridional: Revue de Paléobiologie, v. 6, p. 177182.Google Scholar
Zaninetti, L., Ciarapica, G., Decrouez, D., and Martini, R., 1987b, Sur la subdivision des Involutinacea Bütschli, 1880 (Foraminifères): Revue de Paléobiologie, v. 6, p. 13.Google Scholar
Zaninetti, L., Rettori, R., He, Y., and Martini, R., 1991, Paratriasina He, 1980 (Foraminiferida, Trias medio della Cina): morfologia, tassonomia, filogenesi: Revue de Paléobiologie, v. 10, p. 301308.Google Scholar
Zaninetti, L., Rettori, R., Martini, R., Cirilli, S., and Ciarapica, G., 1992, Il foraminifero Abriolina Luperto, 1963 (Trias medio, Appennino Meridionale): redescrizione, tassonomia, nuovi dati sulla distribuzione stratigrafica: Revue de Paléobiologie, v. 11, p. 197204.Google Scholar
Zaninetti, L., Martini, R., and Altıner, D., 1992, Les Miliolina (Foraminiferida): proposition pour une nouvelle subdivision; description des familles Hydraniidae, n. fam., et Siculocostidae, n. fam.: Revue de Paléobiologie, v. 11, p. 213217.Google Scholar
Zaninetti, L., Rettori, R., and Martini, R., 1994, Aulotortus? eotriasicus, n. sp., un nouvo foraminifero del Trias medio (Anisico) delle Dinaridi ed Ellenidi: Bollettino della Società Paleontologica Italiana, v. 33, p. 4349.Google Scholar
Zhang, F., Romaniello, S.J., Algeo, T., Lau, K.V., Clapham, M.E., Richoz, S., Hermann, A.D., Smith, H., Horacek, M., and Anbar, A.D., 2018, Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extension: Science Advances, v. 4, no. 4, e1602921. https://doi.org/10.1126/sciadv.1602921.CrossRefGoogle Scholar
Zolotova, V.P. and Baryshnikov, V.V., 1980, Foraminifers from the stratotype area of the Kungurian Stage: Akademiya Nauk SSSR, Ural'skii Nauchnii Tsentr. ‘Biostratigrafiya Artinskogo i Kungurskogo Yarusov Urala’, p. 72–109. [in Russian]Google Scholar