Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T07:54:05.884Z Has data issue: false hasContentIssue false

Trepostomate bryozoans from the upper Katian (Upper Ordovician) of Morocco: gigantism in high latitude Gondwana platforms

Published online by Cambridge University Press:  04 June 2015

Andrea Jiménez-Sánchez
Affiliation:
Center of Biology, Geosciences and Environmental Education, University of West Bohemia, Klatovská 51,306 19 Plzen, Czech Republic, 〈[email protected]
Enmanuelle Vennin
Affiliation:
Biogéosciences, Université de Bourgogne, 6 bd. Gabriel, 21000 Dijon, France, 〈[email protected]
Enrique Villas
Affiliation:
Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, C/ Pedro Cerbuna 10, 50009 Zaragoza, Spain, 〈[email protected]

Abstract

A study of the Upper Ordovician trepostomate bryozoans belonging to the families Amplexoporidae and Monticuliporidae, from the eastern Anti-Atlas of Morocco, is presented here. They occur in the marly to fine-grained limestone, intermediate unit of the Khabt-el-Hajar Formation, late Katian in age, representing outer-ramp depositional environments. They inhabited the highest paleolatitude known for a bryozoan fauna during the Ordovician, estimated at more than 65–70ºS. A total of 11 species of the genera Anaphragma, Atactoporella, Homotrypa, Monotrypa, Monticulipora, and Prasopora are described. Three species are already known from the equatorial-tropical paleocontinents of Baltica, Laurentia, and Siberia: Anaphragma mirabile, Monotrypa jewensis, and Prasopora falesi. Four new taxa are described:Anaphragma undulata, Atactoporella moroccoensis, Monticulipora globulata, and Monticulipora irregularis.

The two species of Anaphragma and the one of Atactoporella display significantly larger zoarial sizes than congeneric species, representing gigantism among bryozoans. Polar gigantism is rejected for the two species of Anaphragma as is gigantism related to photosynthetic endosymbionts. An alternative proposal for their giant size is their long zoarial life span due to their well-balanced, robust branching form, with a relatively wide basal supporting surface, adapted to unconsolidated substrates in environments below wave base. Their great stability in outer-ramp environments, with infrequent storms, would allow the zoaria to grow for an extended time and reach large sizes before being overturned and buried. Atactoporella moroccoensis, has both zoaria and zooecia gigantic, suggesting a hypothesis of polar gigantism.

Type
Articles
Copyright
Copyright © 2015, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvaro, J.J., Vennin, E., Villas, E., Destombes, J., and Vizcaïno, D., 2007, Pre-Hirnantian (latest Ordovician) benthic community assemblages: Controls and replacements in a siliciclastic-dominated platform of the eastern Anti-Atlas, Morocco: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 245, p. 2036, doi:10.1016/j.palaeo.2005.09.035.Google Scholar
Arnaud, P.M., 1974, Cotribution à la bionomie marine benthique des regions antarctiques et subantarctiques: Tethys, v. 6, p. 465656.Google Scholar
Bassler, R.S., 1906, A study of the James types of Ordovician and Silurian Bryozoa: Unite State National Museum Proceeding, v. 30, no. 1442, p. 166.Google Scholar
Bassler, R.S., 1911, The early Paleozoic Bryozoa of the Baltic provinces: Bulletin of the United States National Museum, Washington, v. 77, p. 1382.Google Scholar
Bergström, S.M., Chen, X., Gutiérrez-Marco, J.C., and Dronov, A., 2009, The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to ə13C chemostratigraphy: Lethaia, v. 42, p. 97107, doi: 10.1111/j.1502-3931.2008.00136.x.Google Scholar
Berner, R.A., 2001, Modeling atmospheric O2 over Phanerozoic time: Geochimica et Cosmochimica Acta, v. 65, p. 685694, doi:10.1016/S0016-7037(00)00572-X.Google Scholar
Black, R., and Fabre, J., 1980, A brief outline of the geology of West Africa: Episodes, v. 4, p. 1725.Google Scholar
Boardman, R.S., 1960, Trepostomatous Bryozoa of the Hamilton Group of New York State: U. S. Geological Survey, Professional Paper 340, p. 1–87.Google Scholar
Borg, F., 1926, Studies on Recent cyclostomatous Bryozoa: Zoologiska Bidrag fran Uppsala, v. 10, p. 181507.Google Scholar
Bork, K.B., and Perry, T.G., 1968, Bryozoa (Ectoprocta) of Champlainian age (Middle Ordovician) from northwestern Illinois and adjacent parts of Iowa and Wisconsin, Part II, Homotrypa, Orbignyella, Prasopora, Monticulipora and Cyphotrypa: Journal of Paleontology, v. 42, p. 10421065.Google Scholar
Boulange, M.F., 1963, Sur quelques espéces nouvelles de bryozoaires de l’Ordovicien Supérieur de la Montagne Noire: Bulletin de la Société Géologique de France, v. 7, Serie 5, p. 3440.Google Scholar
Brown, G.D., 1965, Trepostomatous Bryozoa from the Logana and Jessamine Limestones (Middle Ordovician) of the Kentucky Bluegrass Region: Journal of Paleontology, v. 39, p. 9741006.Google Scholar
Burkhard, M.S., Caritg, U., Helg, Robert-Charrue, C., and Soulaimani, S., 2006, Tectonics of the Anti-Atlas of Morocco: Compte Rendus Geoscience, v. 338, p. 1124.Google Scholar
Buttler, C.J., and Massa, D., 1996, Late Ordovician bryozoans carbonate buildups, Tripolitania, Libya, in Gordon, D.P., Smith, A.M., and Grant-Mackie, J.A., eds., Bryozoans in Space and Time, Proceeding of the 10th International Bryozoology Conference, Victoria University of Wellington, New Zealand, Niwa, Wellington, p. 6368.Google Scholar
Buttler, C.J., Cherns, L., and Massa, D., 2007, Bryozoan mud-mounds from the Upper Ordovician Jifarah (Djeffara) Formation of Tripolitania, North-West Libya: Palaeontology v. 50, p. 479494, doi: 10.1111/j.1475-4983.2007.00636.x.Google Scholar
Chapelle, G., and Peck, L.S., 1999, Polar gigantism dictated by oxygen availability: Nature, v. 399, p. 114115, doi: 10.1038/20099.Google Scholar
Cherns, L., and Wheeley, J.R., 2007, A pre-Hirnantian (Late Ordovician) interval of global cooling – The Boda even re-assessed: Palaeogeography, Palaeoclimatology, Paleoecology, v. 251, p. 446460, doi:10.1016/j.palaeo.2007.04.010.Google Scholar
Clerc, S., Buoncristiani, J-F., Guiraud, M., Vennin, E., Desaubliaux, G., and Portier, E 2013, Subglacial to proglacial depositional environments in an Ordovician glacial tunnel valley, Alnif, Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 370, p. 127144.Google Scholar
Colmenar, J., Villas, E., and Vizcaïno, D., 2013, Upper Ordovician brachiopods from the Montgne Noire (France): endemic Gondwanan predecessors of Prehirnantian low-latitude immigrants: Bulletin of Geoscience, v. 88, no. 1, p. 153174, doi: 10.3140/bull.geosci.1352.Google Scholar
Conti, S., 1990, Upper Ordovician Bryozoa from Sardinia: Palaeontographia Italica, v. 77, p. 85165.Google Scholar
Coward, M.P., and Ries, A.C., 2003, Tectonic development of North Africa basins, in Arthur, T.J., Macgregor, D.S., and Cameron, N.R., eds., Petroleum Geology of Africa: New Themes and Developing Technologies: Geological Society of London, Special Publications, v. 207, p. 6183.Google Scholar
Cowen, R., 1983, Algal symbiosis and its recognition in the fossil record, in Tevesz, M.J.S., and McCall, P.L., eds., Biotic interactions in recent and fossil benthic communities: New York, Plenum, p. 431438.Google Scholar
Cumings, E.R., and Galloway, J.J., 1913, The stratigraphy and paleontology of the Tanner’s Creek section of the Cincinnati Series of Indiana: 37th Annual Report of the Department of Geology and Natural Resource of Indiana, p. 353–478.Google Scholar
DeBroyer, C., 1977, Analysis of the gigantism and dwarfness of Antarctic and Subantarctic Gammaridean Amphipoda, in Adaptations within Antarctic Ecosystems, Proceedings 3rd SCAR (ed. Llano, G. A.), Washington: Symposium Antarctic Biology, Smithsonian Institution, p. 327–334.Google Scholar
Destombes, J., 1963, Quelques nouveaux Phacopina (Trilobites) de l’Ordovicien supérieur de l’Anti-Atlas (Maroc): Notes du Service géologique du Maroc, v. 23, no. 172, p. 4765.Google Scholar
Destombes, J., 1966, Quelques Calymenina (Trilobites) de l’Ordovicien moyen et supérieur de l’Anti-Atlas (Maroc): Notes et Mémoires du Service géologique du Maroc, v. 26, no. 188, p. 3353.Google Scholar
Destombes, J., 1987, Notice explicative de la carte géologique de Maroc au 1/200000: feuille Tafilalt-Taouz (Anti-Atlas oriental), Cambrien moyen, Ordovicien, base du Silurien: Rapport inedite du Service de la Carte géologique du Maroc, Rabat, 87 p.Google Scholar
Destombes, J., Termier, H., and Termier, G., 1971, Sur quelques Bryozoaires ectoproctes de l’Ordovicien supérieur du sud Marocain: Notes et Memoires, Service Géologique du Moroc, v. 31, no. 237, p. 6164.Google Scholar
Destombes, J., Hollard, H., and Willefert, S., 1985, Lower Palaeozoic Rocks of the World. In Holland, C.H., ed., Lower Palaeozoic Rocks of Northwest and West-Central Africa, v. 4, p. 91136, Jonh Wiley and Sons.Google Scholar
d’Orbigny, A., 1850, Note sur quelques espéces nouvelles de Bryozoaires fossiles des terrains crétacés de la France, Especes de I’étage cénomanien ou de la craie chlorite: Revue et Magazine de Zoologie pure et appliquée, v. 2, p. 170181.Google Scholar
Dreyfuss, M., 1948, Contribution à l’etude géologique et paléontotologique de l’Ordovicien supérieur de la Montagne Noire: Mémoires de la Société Geologique de France, v. 58, 81 p.Google Scholar
Ernst, A., and Key, M., 2007, Upper Ordovician bryozoan from the Montagne de Noire, Southern France: Journal of Systematic Palaeontology, v. 5, p. 359428, doi: 10.1017/S1477201907002155.Google Scholar
Ernst, A., and Nakrem, H.A., 2011, Stenolaemate bryozoans from the Mjøsa Formation (Late Ordovician, Katian) of Helgøya (Bergevika), southern Norway: Norwegian Journal of Geology, v. 91, p. 163180.Google Scholar
Fortey, R.A., and Cocks, L.R.M., 2005, Late Ordovician global warming – the Boda event: Geology, v. 33, no. 5, p. 405408, doi: 10.1130/G21180.1.Google Scholar
Gutiérrez-Marco, J.C., , A.A., García-Bellido, D.C., Rábano, I., and Valério, M., 2009, Giant trilobites and trilobite clusters from the Ordovician of Portugal: Geology, v. 37, p. 443446, doi: 10.1130/G25513A.1.Google Scholar
Håkansson, E., and Madsen, L., 1991, Symbiosis: a plausible explanation of gigantism in Permian trepostome bryozoans, in Bigey, F.P., and d’Hondt, J.L., eds., Bryozoaires Actuales et Fossiles: Nantes: Societe des Sciences Naturalles de l’Ouest de la France: Memoire hors serie, p. 151159.Google Scholar
Hallock, P., 1981, Algal symbiosis: a mathematical analysis: Marine Biology, v. 62, p. 249255, doi: 10.1007/BF00397691.Google Scholar
Hallock, P., 1996, The energetics of algal symbiosis: implications for evolution: Sixth North American paleontological convention; abstracts of papers, Special Publication of the Paleontological Society, v. 8, 158 p.Google Scholar
Harper, D.A.T., Rasmussen, C.M.Ø., Liljeroth, M., Blodgett, R.B., Candela, Y., Jin, J., Percival, I.G., Rong, J-Y., Villas, V., and Zhan, R-B., 2013. Biodiversity, biogeography and phylogeography of Ordovician rhynchonelliform brachiopods: Geological Society, London, 38, p. 127144, doi: 10.1144/M38.11.Google Scholar
Havlíček, V., 1971, Brachiopodes de l’Ordovicien du Maroc: Notes et Memoires du Service géologique, v. 230, p. 1135.Google Scholar
Havlíček, V., 1981, Upper Ordovician brachiopods from the Montagne Noire: Paleontographica, Abteilung A, v. 176, p. 134.Google Scholar
Hu, Z., 1990, Telychian (Silurian) Bryozoa from Ningqiang, S. Shaanxi: Acta Paleontologica Sinica, v. 29, p. 600611.Google Scholar
James, U.P., 1884, Description of four new species of fossils from the Cincinnati Group: Journal of the Cincinnati Society of Natural History, v. 7, p. 137139.Google Scholar
Jaroshinskaja, A.M., 1962, Some representatives of the bryozoan family Monticuliporidae in the Upper Ordovician of the Altai Mountains: Trudy Sibirskogo Nauchno-isledovatelskogo Instituta Geologii, Geofiziki i Mineralnogo Syrya, v. 23, p. 143149.Google Scholar
Jiménez-Sánchez, A., Spjeldnaes, N., and Villas, E., 2007, Ashgill bryozoans from the Iberian Chains (NE Spain) and their contribution to the Late Ordovician biodiversity peak in North Gondwana: Ameghiniana, v. 44, p. 681696.Google Scholar
Jiménez-Sánchez, A., 2009, The upper Katian (Ordovician) bryozoans from the Eastern Iberian Chains (NE Spain): Bulletin of Geosciences, v. 84, p. 687738, doi: 10.3140/bull.geosci.1156.Google Scholar
Jiménez-Sánchez, A., 2010, New monticuliporidae (Trepostomata) from the Cystoid Limestone Formation (Upper Ordovician) of the Iberian Chains (NE Spain): Geodivérsitas, v. 32, p. 177199.Google Scholar
Jiménez-Sánchez, A., Anstey, R.L., and Azanza, B., 2010, Description and phylogenetic analysis of Iberostomata fombuenensis new genus and species (Bryozoa Ptilodictyina): Journal of Paleontology, v. 84, p. 695709.Google Scholar
Jiménez-Sánchez, A., and Villas, E., 2010, The bryozoan dispersion into the Mediterranean margin of Gondwana during the pre-glacial Late Ordovician: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 294, p. 220231, doi:10.1016/j.palaeo.2009.11.027.Google Scholar
Jiménez-Sánchez, A., Taylor, P.D., and Gómez, J.B., 2013, Palaeogeographical patterns in Late Ordovician bryozoan morphology as proxies for temperature, Bulletin of Geosciences, v. 88, p. 417426, doi: 10.3140/bull.geosci.1396.Google Scholar
Kettner, R., 1913, O novém nalezišti bryozoí a jiných zhamenělin spodního siluru na Pernikářce u Košíř: Rozpravy Česke Akademie cís Frant. Jos., v. 22, no. 5, p. 122.Google Scholar
Key, M.M., Jackson, P.N.W., Håkansson, E., Patterson, W.P., and Moore, M.D., 2005, Gigantism in Permian trepostomes from Greenland: testing the algal symbiosis hypothesis using δ13C and δ18O values, in Moyano, C., and Jackson, P.N.W., eds., Bryozoan Studies: London, Taylor and Francis Group, p. 141151.Google Scholar
Maazouz, B.E., and Hamoumi, N., 2007, Différenciation paléogéographique à l’Ordovicien supérieur dans le Tafilat (Anti-Atlas oriental, Maroc) sous l’intéraction de la glaciation et de la tectonique: Comptes Rendus Geoscience, v. 339, p. 562571.Google Scholar
Marintsch, E.J., 1981, Taxonomic reevaluation of Prasopora simulatrix Ulrich (Bryozoa. Trepostomata): Journal of Paleontology, v. 55, p. 957961.Google Scholar
Meddour, A., Razin, P., Jati, M., and Rubino, J.L., 2010, Les calcaires à bryozoaires de l’Ordovicien supérieur de l’Anti-Atlas oriental (Maroc): Environment de depot et analyse stratigraphique, in Strati 2010. 4th “French” Congress on Stratigraphy, p. 166.Google Scholar
Miller, S.A., 1889, North American Geology and Paleontology: Cincinnati, Western Methodist Book Concern, 664 p.Google Scholar
Moran, A.L., and Woods, H.A., 2012, Why might they be giants? Towards an understanding of polar gigantism: The Journal of Experimental Biology, v. 215, p. 19952002, doi: 10.1242/jeb.067066.Google Scholar
Morsilli, M., Bosellini, F.R., Pomar, L., Hallock, P., Aurell, M., and Papazzoni, C.A., 2012, Mesophotic coral buildups in a prodelta setting (Late Eocene, Southern Pyrenees, Spain): a mixed carbonate–siliciclastic system: Sedimentology, v. 59, p. 766794, doi: 10.1111/j.1365-3091.2011.01275.x.Google Scholar
Nicholson, H.A., 1879, On the structure and affinities of the “tabulate corals” of the Paleozoic Period, with critical descriptions of illustrative specie: Edinburgh, William Blackwood and Sons, 342 p.Google Scholar
Nicholson, H.A., 1881, On the structure and affinities of the genus Monticulipora and its subgenera, with critical descriptions of illustrative species: Edinburgh, William Blackwood and Sons, 240 p.Google Scholar
Nicholson, H.A., and Etheridge, R., 1877, On Prasopora grayae, a new genus and species of Silurian corals: Annals and Magazine of Natural History series, v. 4, no. 20, p. 388392.Google Scholar
Owen, D.E., 1962, Ludlovian Bryozoa from the Ludlow district: Palaeontology, v. 5, p. 195212.Google Scholar
Peck, L.S., and Harper, E.M., 2010, Variation in size of living articulated brachiopods with latitude and depth: Marine Biology, v. 157, p. 22052213, doi: 10.1007/s00227-010-1486-5.Google Scholar
Perry, T.G., and Hattin, D.E., 1960, Osgood (Niagaran) bryozoans from the type area: Journal of Paleontology, v. 34, p. 695710.Google Scholar
Pickerill, R.K., and Brenchley, P.J., 1979, Caradoc marine communities of the Routh Berwyn Hills, North Wales: Palaeontology, v. 22, p. 22292264.Google Scholar
Piqué, A., 2001, Geology of Northwest Africa, Beitäge zur regionalen Geologic der Erde, Band 29, Gebr. Borntraeger edit., Berlin, Stuttgart, 310 p.Google Scholar
Počta, P., 1902, Anthozoaires et Alcyonaires, in Barrande, J. Système Silurien du centre de la Bohême: Prague, v. 8, no. 2, 347 p.Google Scholar
Prantl, F., 1940, Note préliminaire sur les Bryozoaires Ordoviciens de la Montagne Noir: Vestnik Karlowske Ceske Spol Nauk, v. 9, 2 p.Google Scholar
Raizen, D.N., Cuffey, R.J., and Rockwell-Garland, L.A., 1999, Unusually large (“giant”) bryozoan colonies in the Rodman Limestone at Bellefonte (Middle Ordovician, central Pennsylvania): Geological Society of America, Abstracts with Programs, v. 31, no. 5, p. 66.Google Scholar
Robert-Charrue, C., and Burkhard, M., 2008, Inversion tectonics, interference pattern and extensional fault-related folding in the Eastern Anti-Atlas, Morocco: Swiss Journal of Geoscience 101, p. 397408, doi: 10.1007/s00015-008-1266-0.Google Scholar
Röhlich, P., 1957, Stratigrafie a vývoj bohdaleckých vrstev středočeského ordoviku: Sbornik Ústrední ústav Geololicky, Oddíl Geologický, v. 23, p. 373439.Google Scholar
Sharpe, D., 1853, Notes and description of the animal remains, in Ribeiro, S.C., ed., Carboniferous and Silurian Formations of the neighbourhood of Russaco in Portugal: Quarterly Journal of the Geological Society, London, v. 9, p. 135160.Google Scholar
Schönlaub, H.P., 1998, Review of the Paleozoic paleogeography of the southern Alps – The perspective from the Austrian side: Giornale di Geological, Spec. Issue. ECOS VII Southern Alps Field Trip Guidebook, v. 60, p. 5968.Google Scholar
Taylor, P.D., and Allison, P.A., 1998, Bryozoan carbonates through time and space: Geology, v. 26, p. 459462, doi: 10.1130/0091-7613(1998)026<0459:BCTTAS>2.3.CO;2.Google Scholar
Taylor, P.D., and Sendino, C., 2010, Latitudinal distribution of bryozoan-rich sediments in the Ordovician: Bulletin of Geosciences, v. 85, p. 565572, doi: 10.3140/bull.geosci.1177.Google Scholar
Termier, H., and Termier, G., 1950, Paléontologie marocaine. II: Invértebrés de l’ére Primaire, pt. 2, Bryozoaires et Brachiopodes: Notes et Memoires, Service Geologique Marocain, v. 77, p. 120.Google Scholar
Ulrich, E.O., 1882, American Palaeozoic Bryozoa: Journal of the Cincinnati Society of Natural History, v. 5, p. 121175, 232–257.Google Scholar
Ulrich, E.O., 1883, American Paleozoic Bryozoa: Journal of the Cincinnati Society of Natural History, v. 6, p. 245279.Google Scholar
Ulrich, E.O., 1886, Report on the Lower Silurian Bryozoa with preliminary descriptions of some of the new species: Minnesota Geology and Natural History Survey Annual Report 14th, 1885, p. 57103.Google Scholar
Ulrich, E.O., 1893, On Lower Silurian Bryozoa of Minnesota: Minnesota Geology and Natural History Survey, Final Report, v. 3, p. 96332.Google Scholar
Ulrich, E.O., and Bassler, R.S., 1904, A revision of the Paleozoic Bryozoa, Part. II, Trepostomata: Smithsonian Miscellaneous Collections, v. 47, p. 1555.Google Scholar
Vennin, E., Álvaro, J.J., and Villas, E., 1998, High-latitude pelmatozoan-bryozoan mud-mounds from the Late Ordovician northern Gondwana platform: Geological Journal, v. 3, p. 121140.Google Scholar
Verberk, W.C.E.P, and Atkison, D., 2013, Why polar gigantism and Palaeozoic gigantism are not equivalent: effects of oxygen and temperature on the body size of ectotherms: Funcional Ecology, doi: 10.1111/1365–2435.12152.Google Scholar
Villas, E., 1985, Braquiópodos del Ordovícico Medio y Superior de las Cadenas Ibéricas Orientales: Memorias del Museo Paleontológico de la Universidad de Zaragoza, v. 1, p. 1223.Google Scholar
Villas, E., Durán, H., and Julivert, M., 1987, The Upper Ordovician Clastic Sequence of the Catalonian Coastal Ranges and its Brachiopod Fauna: Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, v. 174, p. 5574.Google Scholar
Villas, E., Vizcaïno, D., Álvaro, J.J., Destombes, J., and Vennin, E., 2006, Biostratigraphic control of the latest-Ordovician glaciogenic unconformity in Alnif (Eastern Anti-Atlas, Morocco), based on brachiopods: Geobios, v. 39, p. 727737, doi: 10.1016/j.geobios.2005.05.003.Google Scholar
Vinassa de Regny, P., 1910, Fossili Ordoviciani del Nucleo Centrale Carnico: Atti della Accademia Gioenia di Scienze Naturali in Catania Serie V, v. 3, Mem. XII, p. 148.Google Scholar
Vinassa de Regny, P., 1914, Fossili ordoviciani di Uggwa (Alpi Carniche): Memorie dell’Instituto Geologico della R. Universitetà di Padova, v. 2, p. 195221.Google Scholar
Vinassa de Regny, P., 1915, Fossili Ordoviciani del Capolago presso il passo di Volaia (Alpi Carniche): Palaeontographia Italica, v. 21, p. 97117.Google Scholar
Vinassa de Regny, P., 1942, Fossili Ordoviciani sardi, Parte II, Atti Reale Accademia Italiana, Memorie di Scienze Fisica, Matematica e Naturali, v. 12, p. 10251055.Google Scholar
Woods, H.A., Moran, A.L., Arango, C.P., Muller, L., and Shields, C., 2009, Oxygen hypothesis of polar gigantism not supported by performance of Antarctic pycnogonids in hypoxia: Proceedings of the Royal Society of London B, v. 276, p. 10691075, doi: 10.1098/rspb.2008.1489.Google Scholar