Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-18T19:31:56.088Z Has data issue: false hasContentIssue false

Tremadocian stylophoran echinoderms from the Taebaeksan Basin, Korea

Published online by Cambridge University Press:  14 July 2015

Seung-Bae Lee
Affiliation:
School of Earth and Environmental Sciences, Seoul National University, Seoul 151-747, Korea,
Bertrand Lefebvre
Affiliation:
School of Earth and Environmental Sciences, Seoul National University, Seoul 151-747, Korea,
Duck K. Choi
Affiliation:
School of Earth and Environmental Sciences, Seoul National University, Seoul 151-747, Korea,

Abstract

Abundant isolated elements of cornute and mitrate stylophorans were recovered from the upper Tremadocian Tumugol Formation in the Taebaeksan Basin, Korea. Cornute skeletal elements comprise a diverse assemblage of marginals and brachials of cothurnocystid affinities, suggesting the presence of no fewer than four different species. Mitrate remains include numerous isolated adorals, marginals, and aulacophoral plates with typical peltocystidan morphologies. Two adorals are identified as Anatifopsis sp., while all the others are attributable to A. cocaban. However, the two previously documented peltocystidans of Korea, A. cocaban and A. truncata, are sufficiently distinct from other Anatifopsis species to warrant assignment to a new genus, Taebaekocystis. Cladistic analyses suggest that Lagynocystida is the sister group of the clade uniting peltocystidans and mitrocystitidans and that the adorals of Taebaekocystis n. gen. and associated isolated peltocystidan elements possibly account for several different types of peltocystidans, intermediate in morphology between Peltocystidae and Kirkocystidae.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrande, J. 1872. Système Silurien du centre de la Bohême. Supplément au. Volume I. Trilobites, Crustacés Divers et Poissons. Bellman, Prague, 647 p.Google Scholar
Barrande, J. 1887. Système Silurien du centre de la Bohême, Volume VII, Classe des Échinodermes, Ordre des Cystidées. Rivnac, Prague, 233 p.Google Scholar
Bassler, R. S. 1943. New Ordovician cystidean echinoderms from Oklahoma. American Journal of Science, 241:694703.CrossRefGoogle Scholar
Bassler, R. S. 1950. New genera of American Middle Ordovician “Cystoidea.” Washington Academy of Sciences Journal, 40:273277.Google Scholar
Bather, F. A. 1913. Caradocian Cystidea from Girvan. Transactions of the Royal Society of Edinburgh, 49:359529.CrossRefGoogle Scholar
Bather, F. A. 1929. Une classe d'échinodermes sans trace de symétrie rayonnée. Association française pour l'avancée des sciences, p. 435438.Google Scholar
Beisswenger, M. 1994. A calcichordate interpretation of the new mitrate Eumitrocystella savilli from the Ordovician of Morocco. Paläontologische Zeitschrift, 68:443462.CrossRefGoogle Scholar
Caster, K. E. 1952. Concerning Enoploura of the Upper Ordovician and its relation to other carpoid Echinodermata. Bulletins of American Paleontology, 34:147.Google Scholar
Caster, K. E. 1983. A new Silurian carpoid echinoderm from Tasmania and a revision of the Allanicytidiidae. Alcheringa, 7:321335.CrossRefGoogle Scholar
Chauvel, J. 1941. Recherches sur les cystoïdes et les carpoïdes armoricains. Mémoires de la Société géologique et minéralogique de Bretagne 5, 286 p.Google Scholar
Chauvel, J. 1966. Echinodermes de l'Ordovicien du Maroc. Editions du CNRS, Cahiers de Paléontologie, Paris, 120 p.Google Scholar
Chauvel, J. 1981. Etude critique de quelques échinodermes stylophores du Massif armoricain. Bulletin de la Société Géologique et Minéralogique de Bretagne, C, 13:67101.Google Scholar
Choi, D. K. 1990. Sphenothallus (“Vermes”) from the Tremadocian Dumugol Formation, Korea. Journal of Paleontology, 64:403408.CrossRefGoogle Scholar
Choi, D. K. 1998. The Yongwol Group (Cambrian–Ordovician) redefined: A proposal for the stratigraphic nomenclature of the Choson Supergroup. Geosciences Journal, 2:220234.CrossRefGoogle Scholar
Choi, D. K., and Kim, K. H. 1989. Problematic fossils from the Dumugol Formation (Lower Ordovician), Dongjeom area, Korea. Journal of the Geological Society of Korea, 25:405412.Google Scholar
Choi, D. K., and Lee, Y. I. 1988. Invertebrate fossils from the Dumugol Formation (Lower Ordovician) of Dongjeom area, Korea. Journal of the Geological Society of Korea, 24:289305.Google Scholar
Choi, D. K., Kim, D. H., Sohn, J. W., and Lee, S.-B. 2003. Trilobite faunal successions across the Cambrian–Ordovician boundary intervals in Korea and their correlation with China and Australia. Journal of Asian Earth Sciences, 21:781793.CrossRefGoogle Scholar
Choi, D. K., Chough, S. K., Kwon, I. K., Lee, S.-B., Woo, J., Kang, I., Lee, H. S., Lee, S. M., Sohn, J. W., Shinn, Y. J., and Lee, D.-J. 2004. Taebaek Group (Cambrian–Ordovician) in the Seokgaejae section, Taebaeksan Basin: A refined lower Paleozoic stratigraphy in Korea. Geosciences Journal, 8:125151.CrossRefGoogle Scholar
Cooper, R. A., Nowlan, G. S., and Williams, S. H. 2001. Global stratotype section and point for the base of the Ordovician system. Episodes, 24:1928.CrossRefGoogle Scholar
Cripps, A. P. 1988. A new species of stem-group chordate from the Upper Ordovician of Northern Ireland. Palaeontology, 31:10531077.Google Scholar
Cripps, A. P. 1989. A new genus of stem chordate (Cornuta) from the Lower and Middle Ordovician of Czechoslovakia and the origin of bilateral symmetry in the chordates. Geobios, 22:215245.CrossRefGoogle Scholar
Cripps, A. P. 1991. A cladistic analysis of the cornutes (stem chordates). Zoological Journal of the Linnean Society, 102:333366.CrossRefGoogle Scholar
Daley, P. E. J. 1992. Two new cornutes from the Lower Ordovician of Shropshire and southern France. Palaeontology, 35:127148.Google Scholar
David, B., Lefebvre, B., Mooi, R., and Parsley, R. L. 2000. Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology, 26:529555.2.0.CO;2>CrossRefGoogle Scholar
Dehm, R. 1934. Untersuchungen an Cystoideen des rheinischen Unterdevons. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Abteilungen, Sonderdruck aus dem Jahrgang, 1934:1934.Google Scholar
Derstler, K. 1979. Biogeography of the stylophoran carpoids (Echinodermata), p. 91104. In Gray, J. and Boucot, A. J. (eds.), Historical Biogeography, Plate Tectonics and the Changing Environment. Oregon State University Press, Corvallis.Google Scholar
Domínguez, P., and Gutiérrez, J. C. 1990. Primeros representantes ibéricos del género Anatifopsis Barrande, 1872 (Homalozoa, Stylophora; Ordovícico) y su posición sistemática. Acta Geologica Salmaticensia, 168:121131.Google Scholar
Domínguez, P., Jacobson, A. G., and Jefferies, R. P. S. 2002. Paired gill slits in a fossil with a calcite skeleton. Nature, 417:841844.CrossRefGoogle Scholar
Domínguez Alonso, P., Jefferies, R. P. S., and Gil Cid, D. 2002. An annotated check-list of genera and species of carpoids. Coloquios de Paleontología, 53:3368.Google Scholar
Dzik, J. 1999. Evolutionary origin of asymmetry in early metazoan animals, p. 153190. In Palyi, G., Zucchi, C., and Caglioti, L. (eds.), Advances in Biochirality. Elsevier Science S.A., Amsterdam.CrossRefGoogle Scholar
Gil Cid, M. D., Domínguez Alonso, P., Silván Pobes, E., and Escribano Ródenas, M. 1996. Bohemiaecystis jefferiesi n. sp.; primer Cornuta para el Ordovícico Español. Estudios Geológicos, 52:313326.Google Scholar
Gill, E. D., and Caster, K. E. 1960. Carpoid echinoderms from the Silurian and Devonian of Australia. Bulletins of American Paleontology, 41:171.Google Scholar
Jaekel, O. 1901. Uber Carpoideen; eine neue Klasse von Pelmatozoen. Zeitschrift der deutschen geologischen Gesellschaft, 52:661677.Google Scholar
Jaekel, O. 1918. Phylogenie und System der Pelmatozoen. Paläontologische Zeitschrift, 3:1128.CrossRefGoogle Scholar
Jefferies, R. P. S. 1968. The subphylum Calcichordata (Jefferies 1967) primitive fossil chordates with echinoderm affinities. Bulletin of the British Museum (Natural History) (Geology), 16:243339.Google Scholar
Jefferies, R. P. S. 1973. The Ordovician fossil Lagynocystis pyramidalis (Barrande) and the ancestry of amphioxus. Philosophical Transactions of the Royal Society, Series B, 265:409469.Google Scholar
Jefferies, R. P. S. 1986. The Ancestry of the Vertebrates. British Museum (Natural History), London, 376 p.Google Scholar
Kim, K. H., Choi, D. K., and Lee, C. Z. 1991. Trilobite biostratigraphy of the Dumugol Formation (Lower Ordovician) of Dongjeom area, Korea. Journal of the Paleontological Society of Korea, 7:106115.Google Scholar
Kobayashi, T. 1934. The Cambro–Ordovician Formations and faunas of South Chosen. Palaeontology, Pt. 2, Lower Ordovician faunas. Journal of the Faculty of Science, Imperial University of Tokyo, section 2, 3:521585.Google Scholar
Kobayashi, T. 1960. The Cambro–Ordovician Formations and faunas of South Korea, Pt. 6, Palaeontology 5. Journal of the Faculty of Science, University of Tokyo, section 2, 12:217275.Google Scholar
Kobayashi, T. 1966. The Cambro–Ordovician Formations and faunas of South Korea, Pt. 10, Stratigraphy of the Chosen Group in Korea and South Manchuria and its relation to the Cambro–Ordovician Formations of other areas, Section A, The Chosen Group of South Korea. Journal of the Faculty of Science, University of Tokyo, section 2, 16:184.Google Scholar
Kolata, D. R., and Jollie, M. 1982. Anomalocystitid mitrates (Stylophora–Echinodermata) from the Champlainian (Middle Ordovician) Guttenberg Formation of the Upper Mississippi Valley Region. Journal of Paleontology, 56:631653.Google Scholar
Kolata, D. R., Frest, T. J., and Mapes, R. H. 1991. The youngest carpoid: Occurrence, affinities and life mode of a Pennsylvanian (Morrowan) mitrate from Oklahoma. Journal of Paleontology, 65:844855.CrossRefGoogle Scholar
Lee, S.-B., Lefebvre, B., and Choi, D. K. 2004. Morphometric analysis of Tremadocian (earliest Ordovician) kirkocystid mitrates (Echinodermata, Stylophora) from the Taebaeksan Basin, Korea. Geobios, 37:731748.CrossRefGoogle Scholar
Lee, S.-B., Lefebvre, B., and Choi, D. K. 2005. Latest Cambrian cornutes (Echinodermata: Stylophora) from the Taebaeksan Basin, Korea. Journal of Paleontology, 79:139151.2.0.CO;2>CrossRefGoogle Scholar
Lefebvre, B. 1999. Stylophores (Cornuta, Mitrata): Situation au sein du phylum des échinodermes et phylogenèse. Unpublished , , 630 p.Google Scholar
Lefebvre, B. 2000a. Les échinodermes stylophores du Massif armoricain. Bulletin de la Société des Sciences Naturelles de l'Ouest de la France, 22:101122.Google Scholar
Lefebvre, B. 2000b. A new mitrate (Echinodermata, Stylophora) from the Tremadoc of Shropshire (England) and the origin of the Mitrocystitida. Journal of Paleontology, 74:890906.2.0.CO;2>CrossRefGoogle Scholar
Lefebvre, B. 2001. A critical comment on ‘ankyroids’ (Echinodermata, Stylophora). Geobios, 34:597627.CrossRefGoogle Scholar
Lefebvre, B. 2003. Functional morphology of stylophoran echinoderms. Palaeontology, 46:511555.CrossRefGoogle Scholar
Lefebvre, B., and Vizcaïno, D. 1999. New Ordovician cornutes (Echinodermata, Stylophora) from Montagne Noire and Brittany (France) and a revision of the order Cornuta Jaekel 1901. Geobios, 32:421458.CrossRefGoogle Scholar
Martí Mus, M. 2002. The Ordovician cornute Flabellicystis rushtoni n. gen. n. sp. (Stylophora, Echinodermata) and its phylogenetic position within the group Cornuta. Paläontologische Zeitschrift, 76:99116.Google Scholar
Neige, P., Marchand, D., and Laurin, B. 1997. Heterochronic differentiation of sexual dimorphs among Jurassic ammonite species. Lethaia, 30:145155.CrossRefGoogle Scholar
Nichols, D. 1972. The water-vascular system in living and fossil echinoderms. Palaeontology, 15:519538.Google Scholar
Parsley, R. L. 1988. Feeding and respiratory strategies in Stylophora, p. 347361. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Parsley, R. L. 1991. Review of selected North American mitrate stylophorans (Homalozoa: Echinodermata). Bulletins of American Paleontology, 100:557.Google Scholar
Parsley, R. L. 1997. The echinoderm classes Stylophora and Homoiostelea: Non Calcichordata. Paleontological Society Papers, 3:225248.CrossRefGoogle Scholar
Parsley, R. L. 1998. Taxonomic revision of the Stylophora, p. 111117. In Mooi, R. and Telford, M. (eds.), Echinoderms. Balkema, Rotterdam.Google Scholar
Parsley, R. L., Prokop, R. J., and Derstler, K. 2000. Kirkocystid ankyroids (Stylophora: Echinodermata) from the Sarka Formation (Ordovician) of Bohemia. Vestnik Ceského geologického ustavu, 75:3747.Google Scholar
Ruta, M. 1997. A new mitrate from the Lower Ordovician of southern France. Palaeontology, 40:363383.Google Scholar
Ruta, M. 1999. A cladistic analysis of the anomalocystitid mitrates. Zoological Journal of the Linnean Society, 127:345421.CrossRefGoogle Scholar
Ruta, M., and Theron, J. N. 1997. Two Devonian mitrates from South Africa. Palaeontology, 40:201243.Google Scholar
Seo, K. S., Lee, H. Y., and Ethington, R. L. 1994. Early Ordovician conodonts from the Dumugol Formation in the Baegunsan Syncline, eastern Yeongweol and Samcheog areas, Kangweon-do, Korea. Journal of Paleontology, 68:599616.CrossRefGoogle Scholar
Smith, A. B. 1990. Biomineralization in echinoderms, p. 413442. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Volume 1. Van Nostrand Reinhold, New York.Google Scholar
Smith, A. B., and Jell, P. A. 1999. A new cornute carpoid from the Upper Cambrian (Idamean) of Queensland. Memoirs of the Queensland Museum, 43:341350.Google Scholar
Sprinkle, J. 1992. Radiation of Echinodermata, p. 375398. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum, New York.CrossRefGoogle Scholar
Sumrall, C. D. 1997. The role of fossils in the phylogenetic reconstruction of Echinodermata. Paleontological Society Papers, 3:267288.CrossRefGoogle Scholar
Swofford, D. L. 1993. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1. Natural History Survey, Champaign, Illinois, 257 p.Google Scholar
Thoral, M. 1935. Contribution à l'étude Paléontologique de l'Ordovicien Inférieur de la Montagne Noire et Révision Sommaire de la Faune Cambrienne de la Montagne Noire. Imprimerie de la Charité, Montpellier, 362 p.Google Scholar
Ubaghs, G. 1963. Cothurnocystis Bather, Phyllocystis Thoral and an undetermined member of the order Soluta (Echinodermata, Carpoidea) in the uppermost Cambrian of Nevada. Journal of Paleontology, 37:11331142.Google Scholar
Ubaghs, G. 1967. Le genre Ceratocystis Jaekel (Echinodermata, Stylophora). University of Kansas Paleontological Contributions Paper, 22:116.Google Scholar
Ubaghs, G. 1968. Stylophora, p. S495565. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Pt. S. Echinodermata 1(2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ubaghs, G. 1969. Les Échinodermes “Carpoïdes” de l'Ordovicien Inférieur de la Montagne Noire (France). Cahiers de Paléontologie. Editions du CNRS, Paris, 110 p.Google Scholar
Ubaghs, G. 1975. Early Paleozoic echinoderms. Annual Review of Earth and Planetary Sciences, 3:7998.CrossRefGoogle Scholar
Ubaghs, G. 1979. Trois Mitrata (Echinodermata: Stylophora) nouveaux de l'Ordovicien de Tchécoslovaquie. Paläontologische Zeitschrift, 53:98119.CrossRefGoogle Scholar
Ubaghs, G. 1983. Echinodermata. Notes sur les échinodermes de l'Ordovicien inférieur de la Montagne Noire (France), p. 3355. In Courtessole, R., Marek, L., Pillet, J., and Vizcaïno, D. (eds.), Calymena, Echinodermata et Hyolitha de l'Ordovicien de la Montagne Noire (France Méridionale). Mémoire de la Société d'Etudes Scientifiques de l'Aude, 62 p.Google Scholar
Ubaghs, G. 1998. Echinodermes nouveaux du Cambrien supérieur de la Montagne Noire (France méridionale). Geobios, 31:809829.CrossRefGoogle Scholar
Vizcaïno, D., and Lefebvre, B. 1999. Les échinodermes du Paléozoïque inférieur de Montagne Noire: Biostratigraphie et paléodiversité. Geobios, 32:353364.CrossRefGoogle Scholar
Zelditch, M. L., Sheets, H. D., and Fink, W. L. 2003. The ontogenetic dynamics of shape diversity. Paleobiology, 29:139156.2.0.CO;2>CrossRefGoogle Scholar