Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-03T08:13:37.823Z Has data issue: false hasContentIssue false

Towards a new synthesis of evolutionary relationships and classification of Scleractinia

Published online by Cambridge University Press:  20 May 2016

Jarosław Stolarski
Affiliation:
Instytut Paleobiology, Polska Akademia Nauk, Twarda 51/55, 00–818 Warszawa, Poland
Ewa Roniewicz
Affiliation:
Instytut Paleobiology, Polska Akademia Nauk, Twarda 51/55, 00–818 Warszawa, Poland

Abstract

The focus of this paper is to provide an overview of historical and modern accounts of scleractinian evolutionary relationships and classification. Scleractinian evolutionary relationships proposed in the 19th and the beginning of the 20th centuries were based mainly on skeletal data. More in-depth observations of the coral skeleton showed that the gross-morphology could be highly confusing. Profound differences in microstructural and microarchitectural characters of e.g., Mesozoic microsolenine, pachythecaliine, stylophylline, stylinine, and rhipidogyrine corals compared with nominotypic representatives of higher-rank units in which they were classified suggest their separate (?subordinal) taxonomic status. Recent application of molecular techniques resulted in hypotheses of evolutionary relationships that differed from traditional ones. The emergence of new and promising research methods such as highresolution morphometrics, analysis of biochemical skeletal data, and refined microstructural observations may still increase resolution of the “skeletal” approach. Achieving a more reliable and comprehensive scheme of evolutionary relationships and classification framework for the Scleractinia will require close cooperation between coral biologists, ecologists, geologists, geochemists, and paleontologists.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alloiteau, J. 1952. Madréporaires post-paléozoïques, p. 539684. In Piveteau, J. (ed.), Traité de paléontologie, 1. Paris, Masson.Google Scholar
Alloiteau, J. 1957. Contribution a la systénatique des madréporaires fossiles. C.N.R.S., Paris. I, p. 426 pp.Google Scholar
Barnes, D. 1972. The structure and formation of growth-ridges in scleractinian coral skeletons. Proceedings of the Royal Society of London B, 182:331350.Google Scholar
Baron-Szabo, R. C. 1997. Die Korallenfazies der ostalpinen Kreide (Helvetikum: Allgäuer Schrattenkalk; Nördliche Kalkalpen: Brandenberger Gosau) Taxonomie, Palökologie. Zitteliana, 21:397.Google Scholar
Baron-Szabo, R. C. 1998. A new coral fauna from the Campanian of Northern Spain (Torallola Village, Prov. Lleida). Geologisch-paläontologische Mitteilungen, Innsbruck, 23:127191.Google Scholar
Baron-Szabo, R. C. 2000. Late Campanian-Maastrichtian corals from the United Arab Emirates-Oman border region. Bulletin of The Natural History Museum, Geology Series, 56:91131.Google Scholar
Baron-Szabo, R. C., and Steuber, T. 1996. Korallen und Rudisten aus dem Apt im tertiären Flysch des Parnass-Gebirges bei Delphi-Arachowa. Berliner Geowissenschaftliche Abhandlungen E, 18:375.Google Scholar
Beauvais, L. 1981. Sur la taxinomie des Madréporaires mèsozoiques. Acta Palaeontologica Polonica, 25:345360.Google Scholar
Beauvais, M. 1982. Revision systématique des Madréporaires des couches de Gosau.-Travaux du Laboratoire de Paléontologie des Invertébrés, Université Pierre et Marie Curie 2, 277 p.Google Scholar
Bourne, G. C. 1887. On the anatomy of Mussa and Euphyllia, and the morphology of the madreporarian skeleton. Quarterly Journal of Microscopical Science, London, 28:2152.Google Scholar
Bourne, G. C. 1899. Studies on the structure and formation of the calcareous skeleton of the Anthozoa. Quarterly Journal of Microscopical Science, London, 41:499547.Google Scholar
Budd, A. F. 1991. Neogene paleontology in the northern Dominican Republic. 11. The family Faviidae (Anthozoa: Scleractinia). Pt. I. The genera Montastraea and Solenastrea . Bulletin of America Paleontology, 101:183.Google Scholar
Budd, A. F., Johnson, K. G., and Potts, D. C. 1994. Recognizing morphospecies in colonial reef corals: I. Landmark-based methods. Paleobiology, 20:484505.CrossRefGoogle Scholar
Bryan, W. H., and Hill, D. 1942. Spherulitic crystallization as a mechanism of skeletal growth in the Hexacorals. Proceedings of the Royal Society of Queensland, 52:7891.Google Scholar
Cairns, S. D. 1979. The deep-water Scleractinia of the Caribbean Sea and adjacent waters. Studies on the Fauna of Curaçao and Other Caribbean Islands, LVII:1341.Google Scholar
Cairns, S. D. 1982. Antarctic and Subantarctic Scleractinia. Antarctic Research Series, 34:174.Google Scholar
Cairns, S. D. 1984. New records of ahermatypic corals (Scleractinia) from the Hawaiian and Line Islands. Occasional Papers of Bernice Pauahi Bishop Museum, Honolulu, 25:130.Google Scholar
Cairns, S. D. 1995. New records of azooxanthellate stony corals (Cnidaria: Scleractinia and Stylasteridae) from the Neogene of Panama and Costa Rica. Proceedings of the Biological Society of Washington, 108:533550.Google Scholar
Cairns, S. D. 1998. Azooxanthellate Scleractinia (Cnidaria: Anthozoa) of Western Australia. Records of the Western Australian Museum, 18:361417.Google Scholar
Cairns, S. D. 1999. Cnidaria Anthozoa: deep-water azooxanthellate Scleractinia from Vanuatu, and Wallis and Futuna Islands. In Crosnier, A. (ed.), Résultats des Campagnes MUSORSTOM. Volume 20. Mémoires du Muséum national d'Histoire naturelle 180:31167.Google Scholar
Cairns, S. D., Hoeksema, B. W., and van der Land, J. 1999. Appendix: List of Extant Stony Corals. Atoll Research Bulletin, 459:1346.Google Scholar
Chevalier, J. P. 1961. Recherches sur les Madréporaires et les formations récifales miocénes de la Mediterranée occidentale: Mémoires de la Société Géologique de France, 93:1562.Google Scholar
Chevalier, J. P. 1971. Les Scléractiniaires de la Mélanésie Française (Nouvelle-Calédonie, Iles Chesterfield, Iles Loyauté, Nouvelles Hébrides). Expédition Francaise sur les Récifs Coralliens de la Nouvelle-Calédonie, Ire Partie, 5:1307.Google Scholar
Chevalier, J. P. 1975. Les Scléractiniaires de la Mélanésie Francaise (Nouvelle-Calédonie, Iles Chesterfield, lies Loyauté, Nouvelles Hébrides). Expedition Francaise sur les Récifs Coralliens de la Nouvelle-Calédonie, Deuxieme Partie, 7:1307.Google Scholar
Chevalier, J. P., and Beauvais, L. 1987. Ordre des Scléractiniaires, p. 403764. In Grasse, P. P. (ed.), Traité de Zoologie, Cnidaires, Anthozoaires. Masson, Paris.Google Scholar
Constantz, B. R. 1986a. Coral skeleton construction: a physiochemically dominated process. Palaios, 1:152157.CrossRefGoogle Scholar
Constantz, B. R. 1986b. The primary surface area of corals and variations in their susceptibility to diagenesis. In Schroeder, J. H. and Purser, B. H. (eds.), Reef Diagenesis. Springer Verlag Berlin, Heidelberg.Google Scholar
Constantz, B. R., and Meike, A. 1990. Calcite centers of calcification in Mussa angulosa (Scleractinia), p. 201207. In Crick, R. E. (ed.), Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals. Plenum Press, New York.Google Scholar
Cuif, J. P. 1972. Recherches sur les Madréporaires du Trias. I. Famille des Stylophyllidae. Bulletin du Museum National d'Histoire Naturelle, 17:211291.Google Scholar
Cuif, J. P. 1975. Caracteres morphologiques, microstructuraux et systématiques des Pachythecalidae nouvelle famille de Madréporaires Triassiques. Géobios, 8:157180.CrossRefGoogle Scholar
Cuif, J. P., and Dauphin, Y. 1998. Microstructural and physico-chemical characterization of “centers of calcification” in septa of some Recent scleractinian corals. Paläontologische Zeitschrift, 72:257270.CrossRefGoogle Scholar
Cuif, J. P., and Perrin, C. 1999. Micromorphology and microstructure as expressions of scleractinian skeletogenesis in Favia fragum (Esper, 1795) (Faviidae, Scleractinia). Zoosystema, 21:137156.Google Scholar
Cuif, J. P., Dauphin, Y., and Gautret, P. 1997. Biomineralization features in scleractinian coral skeletons: source of new taxonomic criteria. Boletín de la Real Sociedad Española de Historia Natural (Section Geológica), 92:129141.Google Scholar
Cuif, J. P., Dauphin, Y., and Gautret, P. 1999. Compositional diversity of soluble mineralizing matrices in some recent coral skeletons compared to fine-scale growth structures of fibers: discussion of consequences for biomineralization and diagenesis. International Journal of Earth Sciences, 88:582592.CrossRefGoogle Scholar
Cuif, J. P., Dauphin, Y. Freiwald, A., Gautret, P. and Zibrowius, H. 1999. Biochemical markers of zooxanthellae symbiosis in soluble matrices of skeleton of 24 Scleractinia species. Comparative Biochemistry and Physiology A, 123:269278.CrossRefGoogle Scholar
Duerden, J. E. 1902. West Indian madreporarian polyps. National Academy of Sciences (Washington), Memoir, 7:399648.CrossRefGoogle Scholar
Duerden, J. E. 1904. The coral Siderastrea radians and its postlarval development. Carnegie Institute of Washington Publications, 20:1130.Google Scholar
Duncan, P. M. 1885. A revision of the families and genera of the Sclerodermic Zoantharia, Ed. & H., or Madreporaria (M. Rugosa excepted). Journal of the Linnean Society, Zoology, 18:1204.Google Scholar
Fowler, G. H. 1885. The anatomy of the Madreporaria: I. Quarterly Journal of Microscopical Science, 25:577597.Google Scholar
Fowler, G. H. 1886. The anatomy of the Madreporaria: II. Quarterly Journal of Microscopical Science, 27:116.Google Scholar
Fowler, G. H. 1887. The anatomy of the Madreporaria: III. Quarterly Journal of Microscopical Science, 28:119.Google Scholar
Fowler, G. H. 1888. The anatomy of the Madreporaria: IV. Quarterly Journal of Microscopical Science, 28:415430.Google Scholar
Fowler, G. H. 1890. The anatomy of the Madreporaria: V. Quarterly Journal of Microscopical Science, 30:405422.Google Scholar
Foster, A. B. 1979a. Phenotypicplasticity in the reef corals Montastraea annularis (Ellis & Solander) and Siderastrea siderea (Ellis & Solander). Journal of Experimental Marine Biology and Ecology, 39:2554.CrossRefGoogle Scholar
Foster, A. B. 1979b. Environmental variation in a fossil scleractinian coral. Lethaia, 12:245264.CrossRefGoogle Scholar
Frech, F. 1890. Die Korallenfauna der Trias. Die Korallen der juvavischen Triasprovinz. Palaeontographica, 37:1116.Google Scholar
Gautret, P., Cuif, J. P., and Freiwald, A. 1997. Composition of soluble mineralizing matrices in zooxanthellate and non-zooxanthellate scleractinian corals: biochemical assessment of photosynthetic metabolism through the study of a skeletal feature. Facies, 36:189194.CrossRefGoogle Scholar
Gautret, P., Cuif, J. P., and Stolarski, J. 2000. Organic components of the skeleton of scleractinian corals—evidence from in situ acridine orange staining. Acta Palaeontologica Polonica, 45:107118.Google Scholar
Gill, G. A. 1967. Quelques précisions sur les septes perforés des Poly-piers mésozoïques. Mémoires de la Société Géologique de France (n.s.), 46:5881.Google Scholar
Gill, G. A. 1970. La structure et la microstructure septale de Montlivaltia Lmx.: crit res nouveaux pour la systématique des Hexacoralliaires. Comptes Rendus Hébdomadaires des Séances de Académie des Sciences, D 270:294297.Google Scholar
Gill, G. A. 1980a. The fulturae (“compound synapticulae”), their structure and reconsideration of their systematic value. Acta Palaeontologica Polonica, 25:301310.Google Scholar
Gill, G. A. 1980b. Recognition of pennular structures typical of Mesozoic corals in Discotrochus orbignyanus from the Eocene of the Gulf States. Journal of Paleontology, 54:11081112.Google Scholar
Gill, G. A., and Russo, A. 1973. Presence d'une structure septale de type “Montlivaltide” chez Trochosmilia Madréporaire Éocéne. Annales de Patéontologie, Invertebrates, 59:3761.Google Scholar
Goreau, T. F. 1959. The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biological Bulletin, 116:5975.CrossRefGoogle Scholar
Harrison, P. L., and Jamieson, B. G. M. 1997. Cnidaria and Ctenophora. In Jamieson, B. G. M. (ed.), Reproductive Biology of Inbertebrates 8:21–95. Oxford & IBH Publishing Co. Pty Ltd, New Delhi.Google Scholar
Hatta, M., Fukami, H., Wang, W. Q., Omori, M., Shimoike, K., Hayashibara, T., Ina, Y., and Sugiyama, T. 1999. Reproductive and genetic evidence for a reticulate evolutionary history of mass-spawning corals. Molecular Biology and Evolution, 16:16071613.CrossRefGoogle ScholarPubMed
Hoeksema, B. W. 1989. Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinia: Fungiidae). Zoologische Verhandelingen Leiden, 254:1295.Google Scholar
Jell, J. S. 1969. Septal microstructure and classification of the Philipsastraeidae, p. 5073. In Campbell, K. S. W. (ed.), Stratigraphy and Palaeontology—Essays in Honour of Dorothy Hill. Australian National University Press, Canberra.Google Scholar
Jell, J. S. 1974. The microstructure of some scleractinian corals. Proceedingsof the 2nd International Coral Reef Symposium, Brisbane, 2:301320.Google Scholar
Jell, J. S., and Hill, D. 1974. The microstructure of corals, p. 814. In Sokolov, B. S. (ed.), Ancient Cnidaria. Volume 1. Publishing House ‘Nauka,' Novosibirsk.Google Scholar
Johnston, I. S. 1976. The tissue-skeleton interface in newly-settled polyps of the reef coral Pocillopora damicornis , p. 249260. In Watabe, N. and Wilbur, K. M. (eds.), The Mechanisms of Mineralization in the Invertebrates and Plants. University of South Caroline Press, Columbia.Google Scholar
Johnston, I. S. 1980. The ultrastructure of skeletogenesis in hermatypic corals.: International Review of Cytology, 67:171214.Google Scholar
Koch, G. von. 1882. Über die Entwicklung des Kalkskeletes von Asteroides calycularis und dessen morphologische Bedeutung. Mittheilungen aus der Zoologischen Station zu Neapel, 3:284292.Google Scholar
Lang, J. C. 1984. Whatever works: The variable importance of skeletal and of non-skeletal characters in scleractinian taxonomy. Palaeontographica Americana, 54:1844.Google Scholar
Lafuste, J. 1970. Lames ultra-minces a faces polies. Procede et application a la microstructure des Madreporaires fossiles. Comptes rendus hebdomadaires des seances de l'Academie des Sciences Paris, 270:679681.Google Scholar
Lathuiliére, B. 1996. Is morphology a good way to understand the evolution of corals? Paleontological Society Papers, 1:81105.Google Scholar
Lathuiliére, B. 2000a. Coraux constructeurs de Bajocien inférieur de France. 1ère Partie. Geobios, 33:5172.CrossRefGoogle Scholar
Lathuiliére, B. 2000b. Coraux constructeurs de Bajocien inférieur de France. 2ème Partie. Geobios, 33:153181.CrossRefGoogle Scholar
Loser, H. 1989. Die Korallen der sachsischen Oberkreide. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden, 36:88154.Google Scholar
Loser, H. 1994. La fauna corallienne du mont Kassenberg è Muelheimsur-la-Ruhr (Bassin crétacé de Westphalie, Nord Ouest de l'Allemagne). Coral Research Bulletin, 3:193.Google Scholar
Matthai, G. 1914. A revision of the Recent colonial Astraeidae possessing distinct corallites.: Transactions of the Linnean Society of London, Ser. 2 (Zoology), 17:1140.Google Scholar
Medina, M., Weil, E., and Szmant, A. M. 1999. Examination of the Montastraea annularis species compex (Cnidaria: Scleractinia) using ITS and COI sequences. Marine Biotechnology, 1:8997.CrossRefGoogle Scholar
Milne Edwards, H., and Haime, J. 1857. Histoire naturelle des Coralliaires ou polypes proprement dits. Tome second: classification et description des Zoanthaires sclérodermés de la section des Madreporaires apores, 633 p.CrossRefGoogle Scholar
Montanaro Gallitelli, E. 1975. Hexanthiniaria a new ordo of Zoantharia (Anthozoa, Coelenterata). Bolletino della Societá Paleontologica Italiana, 14:2125.Google Scholar
Morycowa, E. 1971. Hexacorallia et Octocorallia du Crétacé inférieur de Rarǎu (Carpathes orientales roumaines). Acta Palaeontologica Polonica, 16:1149.Google Scholar
Morycowa, E., and Roniewicz, E. 1990. Revision of the genus Cladophyllia and description of Apocladophyllia gen. n. (Cladophylliidae fam., Scleractinia). Acta Palaeontologica Polonica, 29:165187.Google Scholar
Morycowa, E., and Roniewicz, E. 1995. Microstructural disparity between Recent fungiine and Mesozoic microsolenine scleractinians. Acta Palaeontologica Polonica, 40:361385.Google Scholar
Odorico, D. M., and Miller, D. J. 1997. Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (Cnidaria; Scleractinia): patterns of variation consistent with reticulate evolution. Molecular Biology and Evolution, 14:465473.CrossRefGoogle ScholarPubMed
Ogilvie, M. M. 1897. Korallen der Stramberger Schichten. Palaeontographica, Supplement 2:73282.Google Scholar
Pires, D. O. 1997. Cnidae of Scleractinia. Proceedings of the Biological Society of Washington, 110:167185.Google Scholar
Pires, D. O., and Pitombo, F. B. 1992. Cnidae of the Brazilian Mussidae (Cnidaria: Scleractinia) and their value in taxonomy. Bulletin of Marine Science, 51:231244.Google Scholar
Potts, D. C., Budd, A. F., and Garthwaite, R. L. 1993. Soft tissue vs. skeletal approaches to species recognition and phylogeny reconstruction in corals. Courier Forschungs-Institute Senckenberg, 164:221231.Google Scholar
Pratz, E. 1882. Ueber die verwandtschazftlichen Beziehungen einiger Korallengattungen mit hauptsächlicher Berücksichtigung ihrer Septalstructur. Palaeontographica, 29:81122.Google Scholar
Romano, S. L., and Cairns, S. D. 2000. Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bulletin of Marine Science, 67:10431068.Google Scholar
Romano, S. L., and Palumbi, S. R. 1996. Evolution of scleractinian corals inferred from molecular systematics. Science, 271:640642.CrossRefGoogle Scholar
Roniewicz, E. 1976. Les Scléractiniaires du Jurassique supérieur de la Dobrogea Centrale, Roumanie. Palaeontologia Polonica, 34:17118.Google Scholar
Roniewicz, E. 1982. Pennular and non-pennular Jurassic scleractinians—some examples. Acta Palaeontologica Polonica, 27:157193.Google Scholar
Roniewicz, E. 1984. Microstructural evidence of the distichophylliid affinity of the Caryophylliina (Scleractinia). Palaeontographica Americana, 54:515518.Google Scholar
Roniewicz, E. 1989. Triassic scleractinian corals of the Zlambach Beds, Northern Calcareous Alps, Austria. Oesterreichische Akademie Der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse Denkschriften, 126:1152.Google Scholar
Roniewicz, E., and Morycowa, E. 1993. Evolution of the Scleractinia in the light of microstructural data. Courier Forschungsinstitut Senckenberg, 164:233240.Google Scholar
Roniewicz, E., and Stolarski, J. 1999. Evolutionary trends in the epithecate scleractinian corals. Acta Palaeontologica Polonica, 44:131166.Google Scholar
Roniewicz, E., and Stolarski, J. 2001. Triassic roots of the amphiastraeid scleractinian corals. Journal of Paleontology, 75:3445.2.0.CO;2>CrossRefGoogle Scholar
Russo, A. 1979. Studio monografico sui Coralli dell'Eocene di Possagno (Treviso, Italia). Atti e Memorie della Accademia Nazionale di Scienze, Lettere e Arti Di Modena, 21:187.Google Scholar
Sorauf, J. E. 1970. Microstructure and formation of dissepiments in the skeleton of the recent Scleractinia (hexacorals). Biomineralization Research Reports, 2:122.Google Scholar
Sorauf, J. E. 1972. Skeletal microstructure and microarchitecture in Scleractinia (Coelenterata). Palaeontology, 15:88107.Google Scholar
Sorauf, J. E. 1974. Observations on microstructure and biocrystallization in Coelenterates. Biomineralization Research Reports, 7:3755.Google Scholar
Sorauf, J. E. 1999. Skeletal microstructure, geochemistry and organic remnants in Cretaceous scleractinian corals: Santonian Gosau Beds of Gosau, Austria. Journal of Paleontology, 73:10291041.CrossRefGoogle Scholar
Sorauf, J. E., and Jell, J. S. 1977a. Structure and incremental growth in the ahermatypic coral Desmophyllum cristagalli from the North Atlantic. Palaeontology, 20:119.Google Scholar
Sorauf, J. E., and Podoff, N. 1977b. Skeletal structure in deep water ahermatypic corals. Mémoires du Bureau de recherches géologiques et minières, 89:211.Google Scholar
Stolarski, J. 1995. Ontogenetic development of the thecal structures in caryophylliine scleractinian corals. Acta Palaeontologica Polonica, 40:1944.Google Scholar
Stolarski, J. 2000. Origin and phylogeny of Guyniidae (Scleractinia) in the light of microstructural data. Lethaia, 33:1338.CrossRefGoogle Scholar
Stolarski, J., and Russo, A. 2001. Evolution of the post-Triassic pachythecaliine corals. Proceedings of the Biological Society of Washington, 114:???-???.Google Scholar
Van Oppen, M. J. H., Willis, B. L., Van Vugt, H. W. J. A. and Miller, D. J. 2000. Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Molecular Ecology, 9:13631373.CrossRefGoogle Scholar
Vaughan, T. W., and Wells, J. W. 1943. Revision of the suborders, families, and genera of the Scleractinia. Geological Society of America Special Papers, 44:1363.CrossRefGoogle Scholar
Veron, J. E. N. 1995. Corals in space and time: biogeography and evolution of the Scleractinia. Cornell University Press, Ithaca, N.Y., 321 p.Google Scholar
Veron, J. E. N. 2000. Corals of the world. Australian Institute of Marine Science, Townsville MC, 1382 p.Google Scholar
Veron, J. E. N., Odorico, D. M., Chen, C. A., and Miller, D. J. 1996. Reassessing evolutionary relationships of scleractinian corals. Coral Reefs, 15:19.CrossRefGoogle Scholar
Volz, W. 1896. Die Korallenfauna der Trias. II. Die Korallen der Schichten von St. Cassian in Slid Tirol. Palaeontographica, 43:1124.Google Scholar
Wallace, C. 1999. Staghorn Corals of the World: A Revision of the Genus Acropora. Commonwealth Scientific and Industrial Research Organisation (CSIRO) Publishing, Collingwood Victoria, 438 p.CrossRefGoogle Scholar
Wells, J. W. 1956. Scleractinia, p. F328F444. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Pt. F (Coelenterata). The University of Kansas Press, Lawrence, Kansas.Google Scholar
Wells, J. W. 1969. The formation of dissepiments in zoantharian corals, p. 1726. In Stratigraphy and Palaeontology—essays in Honour of Dorothy Hill. Australian National University Press, Canberra.Google Scholar
Zibrowius, H. 1980. Les scléractiniaires de la Méditerranée et de l'Atlantique nord-oriental. Mémoires de l'Institut Océanographique, Monaco, 11:1284.Google Scholar