Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T19:46:30.181Z Has data issue: false hasContentIssue false

Tannuolina and Micrina (Tannuolinidae) from the lower Cambrian of eastern Yunnan, South China, and their scleritome reconstruction

Published online by Cambridge University Press:  20 May 2016

Guoxiang Li
Affiliation:
Nanjing Institute of Geology and Paleontology, Academia Sinica, Nanjing 210008, China,
Shuhai Xiao
Affiliation:
Department of Geological Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24061,

Abstract

The Tannuolinidae includes only two known genera—Micrina Laurie, 1986 and Tannuolina Fonin and Smirnova, 1967, both from the Lower Cambrian. They are phosphatic bimembrate small shelly fossils, consisting of two types of sclerites—the mitral and sellate sclerites. These sclerites show basal-internal accretional growth, spaced growth lamellae, carinae (in mitral sclerites of Tannuolina) or teeth (in mitral sclerites of Micrina), and unevenly distributed pores and canals. The scleritome of tannuolinids is poorly known because they are often preserved as disarticulated sclerites. Here we describe Micrina xiaotanensis new species and Tannuolina zhangwentangi Qian and Bengtson, 1989 from the Lower Cambrian Shiyantou and Yu'anshan formations (upper Meishucunian to Qiongzhusian stages) at Xiaotan, eastern Yunnan, South China. The new material not only extends the geographic range of Micrina, previously known only in Australia, but also includes two composite specimens of T. zhangwentangi: one with a pair of dextral and sinistral mitrals juxtaposed along the apertural margin of their decrescent sides, and the other with a smaller sellate ontogenetically merged with the sella of a larger sellate. Perhaps as a result of being contacting or imbricating surfaces, the decrescent, sella, and duplicature sides are also characterized by negative allometry (relative to other sides) and a sparse distribution of pores. The new fossils do not support reconstructions that place a sellate and a mitral sclerite, respectively, at the anterior and posterior end of the Tannuolina animal, in a way similar to Halkieria evangelista Conway Morris and Peel, 1995. Instead, they are consistent with the traditional view that the scleritome of Tannuolina consisted of four anterior-posterior files of sclerites: two opposing mitral rows flanked by two imbricated sellate series. The bimembrate Micrina may or may not have had a similar scleritome. If Tannuolina and Micrina form a monophyletic group outside the total group of brachiopods, then Micrina is likely to have had a multisclerite scleritome similar to that of Tannuolina. This implies that microstructural similarities between the tannuolinids and some linguliformean brachiopods are probably symplesiomorphic or convergent. Alternatively, Tannuolina and Micrina may represent stem groups leading to the linguliformeans while Halkieria represents a stem group leading to the calcareous brachiopods—a radical hypothesis that would imply that the two brachiopod groups independently evolved the bivalved body plan.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bengtson, S. 1970. The Lower Cambrian fossil Tommotia. Lethaia, 3:363392.Google Scholar
Bengtson, S. 1977. Aspects of problematic fossils in the early Palaeozoic. Acta Universitatis Upsaliensis, 415:171.Google Scholar
Bengtson, S. 1986. A new Mongolian species of the Lower Cambrian genus Camenella and the problems of scleritome-based taxonomy of the Tommotiidae. Paläontologische Zeitschrift, 60:4555.Google Scholar
Bengtson, S. 1990. Eccentrotheca Landing et al., 1990, p. 119121. In Bengtson, S., Morris, S. Conway, Cooper, B. J., Jell, P. A., and Runnegar, B. N. (eds.), Early Cambrian Fossils from South Australia. Association of Australasian Palaeontologists Memoir, 9.Google Scholar
Bengtson, S., Morris, S. Conway, Cooper, B. J., Jell, P. A., and Runnegar, B. N. 1990. Early Cambrian Fossils from South Australia. Association of Australasian Palaeontologists Memoir, 9, 364 p.Google Scholar
Billings, E. 1871. Proposed new genus of Pteropoda [Hyolithellus]. Canadian Naturalist and Geologist, 6:240.Google Scholar
Bischoff, G. C. O. 1976. Dailyatia, a new genus of the Tommotiidae from Cambrian strata of SE Australia (Crustacea, Cirripedia). Senckenbergiana Lethaea, 57:133.Google Scholar
Brasier, M. D., Magaritz, M., Corfield, R., Luo, H., Wu, X., Jiang, Z., Hamdi, B., He, T., and Fraser, A. G. 1990. The carbon- and oxygenisotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation. Geological Magazine, 127:319332.CrossRefGoogle Scholar
Chang, W. 1950. Report of the meeting of the Palaeontological Society of China. Newsletter of the Geological Society of China, 2:10.Google Scholar
Chang, W. 1966. On the classification of Redlichiaceae, with description of new families and new genera. Acta Palaeontologica Sinica, 14:135184.Google Scholar
Cobbold, E. S. 1921. The Cambrian horizons of Comley (Shropshire) and their Brachiopoda, Pteropoda, Gastropoda, etc. Quarterly Journal of the Geological Society of London, 76:325386.Google Scholar
Morris, S. Conway 1995. Enigmatic shells, possibly halkieriid, from the Middle Cambrian Burgess Shale, British Columbia. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 195:319331.CrossRefGoogle Scholar
Morris, S. Conway, and Chen, M. 1990. Tommotiids from the Lower Cambrian of South China. Journal of Paleontology, 64:169184.CrossRefGoogle Scholar
Morris, S. Conway, and Peel, J. 1995. Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Philosophical Transactions of the Royal Society of London, series B (Biological Sciences), 347:305358.Google Scholar
Dzik, J. 1986. Turrilepadida and other Machaeridia, p. 116134. In Hoffman, A. and Nitecki, M. H. (eds.), Problematic Fossil Taxa. Oxford University Press, Oxford.Google Scholar
Fonin, V. D., and Smirnova, T. N. 1967. New group of problematic Early Cambrian organisms and methods of preparing them. Paleontological Journal (English edition), 1967(2):718.Google Scholar
Geyer, G., and Shergold, J. 2000. The quest for internationally recognized divisions of Cambrian time. Episodes, 23:188195.Google Scholar
Grabau, A. W. 1900. Palaeontology of the Cambrian terranes of the Boston Basin. Occasional Papers of the Boston Society of Natural History, 4:601694.Google Scholar
Hinz, I. 1987. The Lower Cambrian microfauna of Comley and Rushton, Shropshire, England. Palaeontographica, Abteilung A, 198:41100.Google Scholar
Högström, A. E. S., and Taylor, W. L. 2001. The machaeridian Lepidocoleus sarlei Clarke, 1896, from the Rochester Shale (Silurian) of New York State. Palaeontology, 44:113130.CrossRefGoogle Scholar
Holmer, L. E. 2001. Phylogeny and classification: Linguliformea and Craniiformea, p. 1126. In Carlson, S. J. and Sandy, M. R. (eds.), Brachiopods Ancient and Modern: A Tribute to G. Arthur Cooper. The Paleontological Society Papers, Volume 7, New Haven.Google Scholar
Holmer, L. E., Skovsted, C. B., and Williams, A. 2002. A stem group brachiopod from the Lower Cambrian: support for a Micrina (halkieriid) ancestry. Palaeontology, 45:875882.Google Scholar
Jenkins, R. J. F., Cooper, J. A., and Compston, W. 2002. Age and biostratigraphy of Early Cambrian tuffs from SE Australia and southern China. Journal of the Geological Society (London), 159:645658.Google Scholar
Jiang, Z. 1985. On the genus Tannuolina. Acta Micropalaeontologica Sinica, 2:231238.Google Scholar
Knoll, A. H., Kaufman, A. J., Semikhatov, M. A., Grotzinger, J. P., and Adams, W. 1995. Sizing up the sub-Tommotian unconformity in Siberia. Geology, 23:11391143.2.3.CO;2>CrossRefGoogle ScholarPubMed
Kobayashi, T. 1944. On the Cambrian formations in Yunnan and Haut-Tonkin and the trilobites contained; miscellaneous notes on the Cambro-Ordovician geology and palaeontology, No. 16. Recent Progress of Natural Sciences in Japan, 19:107138.Google Scholar
Kouchinsky, A., Bengtson, S., Missarzhevsky, V. V., Pelechaty, S., Torssander, P., and Val'kov, A. K. 2001. Carbon isotope stratigraphy and the problem of a pre-Tommotian stage in Siberia. Geological Magazine, 138:387396.Google Scholar
Landing, E. 1984. Skeleton of lapworthellids and the suprageneric classification of tommotiids (Early and Middle Cambrian phosphatic problematica). Journal of Paleontology, 58:13801398.Google Scholar
Landing, E. 1989. Paleoecology and distribution of the Early Cambrian rostroconch Watsonella crosbyi Grabau. Journal of Paleontology, 63:566573.CrossRefGoogle Scholar
Landing, E. 1994. Precambrian-Cambrian boundary global stratotype ratified and a new perspective of Cambrian time. Geology, 22:179182.Google Scholar
Landing, E. 1995. Upper Placentian-Branchian Series of mainland Nova Scotia (middle-upper Lower Cambrian): faunas, paleoenvironments, and stratigraphic revision. Journal of Paleontology, 69:475495.Google Scholar
Landing, E., Nowlan, G. S., and Fletcher, T. P. 1980. A microfauna associated with Early Cambrian trilobites of the Callavia Zone, northern Antigonish Highlands, Nova Scotia. Canadian Journal of Earth Sciences, 17:400418.Google Scholar
Laurie, J. R. 1986. Phosphatic fauna of the Early Cambrian Todd River Dolomite, Amadeus Basin, central Australia. Alcheringa, 10:431454.Google Scholar
Lochman, C. 1956. Stratigraphy, paleontology, and paleogeography of the Elliptocephala asaphoides strata in Cambridge and Hoosick Quadrangles, New York. Geological Society of America Bulletin, 67:13311396.Google Scholar
Luo, H., Jiang, Z., and Tang, L. 1994. Stratotype Section for Lower Cambrian Stages in China. Yunnan Science and Technology Press, Kunming, Yunnan, 183 p.Google Scholar
Luo, H., Jiang, Z., Wu, X., Song, X., and Ouyang, L. 1982. The Sinian-Cambrian Boundary in Eastern Yunnan, China. People's Publishing House of Yunnan, Kunming, Yunnan, 265 p.Google Scholar
Luo, H., Jiang, Z., Wu, X., Song, X., Ouyang, L., Xing, Y., Liu, G., Zhang, S., and Tao, Y. 1984. Sinian-Cambrian Boundary Stratotype Section at Meishucun, Jinning, Yunnan, China. People's Publishing House of Yunnan, Kunming, Yunnan, 154 p.Google Scholar
Missarzhevsky, V. V. 1966. Pervye nakhodki Lapworthella v nizhnem kembrii Sibirskoj platformy. [The first finds of Lapworthella in the Lower Cambrian of the Siberian Platform]. Paleontological Journal, 1966(2):1318.Google Scholar
Missarzhevsky, V. V. 1969. Description of hyolithids, gastropods, hyolithelminths, camenides and forms of an obscure taxonomic position, p. 103175(p. 127–205 in English translation by Amerind Publishing, New Delhi, 1981). In Raaben, M. E. (ed.), The Tommotian Stage and the Cambrian Lower Boundary Problem. Akademiya Nauka SSSR, Moscow.Google Scholar
Missarzhevsky, V. V. 1973. Konodontoobraznye organizmy iz pogranichnykh sloev kembriya i dokembriya Sibirskoj platformy i Kazakhstana. [Conodont-shaped organisms from Precambrian-Cambrian boundary strata of the Siberian Platform and Kazakhstan]. Trudy Instituta Geologii i Geofiziki SO AN SSSR, 49:5357.Google Scholar
Poulsen, C. 1967. Fossils from the Lower Cambrian of Borhholm. Danske Videnskaberns Selskab, Matematisk-Fysiske Meddelelser, 36(2):148.Google Scholar
Qian, Y. 1977. Hyolitha and some problematica from the Lower Cambrian Meishucun Stage in central and southwestern China. Acta Palaeontologica Sinica, 16:255275.Google Scholar
Qian, Y., and Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata, 24:1156.Google Scholar
Qian, Y., Li, G., and Zhu, M. 2001. The Meishucunian Stage and its small shelly fossil sequence in China. Acta Palaeontologica Sinica, 40(supplement):5462.Google Scholar
Qian, Y., Zhu, M., He, T., and Jiang, Z. 1996. New investigation of Precambrian-Cambrian boundary sections in eastern Yunnan. Acta Micropalaeontologica Sinica, 13:225240.Google Scholar
Rozanov, A. Y., and Missarzhevsky, V. V. 1966. Biostratigrafiya i fauna nizhnikh gorizontov kembriya [Biostratigraphy and fauna of Lower Cambrian horizons]. Trudy Geologicheskogo Instituta AN SSSR, 148:1126.Google Scholar
Sepkoski, J. J. 1992. Proterozoic—Early Cambrian diversification of metazoans and metaphytes, p. 553561. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
Steiner, M., Zhu, M., Weber, B., and Geyer, G. 2001. The Lower Cambrian of eastern Yunnan: trilobite-based biostratigraphy and related faunas. Acta Palaeontologica Sinica, 40(supplement):6379.Google Scholar
Tate, R. 1892. The Cambrian fossils of South Australia. Transactions and Proceedings of the Royal Society of South Australia, 15:183189.Google Scholar
Ushatinskaya, G. T. 2001. Tannuolinids, p. 117120. In Alexander, E. M., Jago, J. B., Rozanov, A. Y., and Zhuravlev, A. Y. (eds.), The Cambrian Biostratigraphy of the Stansbury Basin, South Australia. IAPC NAUKA/Interperiodica, Moscow.Google Scholar
Ushatinskaya, G. T. 2002. Genus Micrina (small shelly fossils) from the Lower Cambrian of South Australia: morphology, microstructures, and possible relation to halkieriids. Paleontological Journal (English edition), 36:919.Google Scholar
Walcott, C. D. 1911. Cambrian Geology and Paleontology II: middle Cambrian annelids. Smithsonian Miscellaneous Collections, 57:109144.Google Scholar
Walcott, C. D. 1912. Cambrian Brachiopoda. United States Geological Survey Monographs, 51 (two volumes):1872, 104 pls.Google Scholar
Williams, A., and Holmer, L. E. 2002. Shell structure and inferred growth, functions and affinities of the sclerites of the problematic Micrina. Palaeontology, 45:845873.Google Scholar
Williams, A., Carlson, S. J., Brunton, C. H. C., Holmer, L. E., and Popov, L. 1996. A Supra-Ordinal Classification of the Brachiopoda. Philosophical Transactions of the Royal Society of London, series B (Biological Sciences), 351:11711193.Google Scholar
Wiman, C. 1903. Studien über das Nordbaltische Silurgebiet. I. Olenellussandstein, Obolussandstein und Ceratopygeschiefer. Bulletin of the Geological Institution of the University of Upsala, 6:1276.Google Scholar
Yue, Z. 1987. The discovery of Tannuolina and Lapworthella from Lower Cambrian in Meishucun (Yunnan) and Maidiping (Sichuan) sections. Professional Papers of Stratigraphy and Palaeontology, 16:173180.Google Scholar
Yue, Z., and Gao, L. 1994. A new Early Cambrian species of Tannuolina from Xinjiang region, China. Professional Papers of Stratigraphy and Palaeontology, 24:6678.Google Scholar
Zhang, W. 1987. World's oldest Cambrian trilobites from eastern Yunnan, p. 118. In Nanjing Institute of Geology and Palaeontology (ed.), Stratigraphy and Palaeontology of Systemic Boundaries in China: Precambrian–Cambrian Boundary (1). Nanjing University Press, Nanjing.Google Scholar
Zhou, C., Zhang, J., Li, G., and Yu, Z. 1997. Carbon and oxygen isotopic record of the Early Cambrian from the Xiaotan Section, Yunnan, South China. Scientia Geologica Sinica, 32:201211.Google Scholar
Zhu, M., Li, G., Zhang, J., Steiner, M., Qian, Y., and Jiang, Z. 2001. Early Cambrian stratigraphy of east Yunnan, southwestern China: a synthesis. Acta Palaeontologica Sinica, 40(supplement):439.Google Scholar
Zhuravlev, A. Y. 1996. Preliminary suggestions on the global Early Cambrian zonation. Beringeria, 2(special issue):147160.Google Scholar