Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T04:17:29.386Z Has data issue: false hasContentIssue false

Systematics of organic-walled microfossils from the ca. 780–740 Ma Chuar Group, Grand Canyon, Arizona

Published online by Cambridge University Press:  14 September 2016

Susannah M. Porter
Affiliation:
Department of Earth Science, University of California at Santa Barbara, Santa Barbara, California 93106, USA 〈[email protected]〉, 〈[email protected]
Leigh Anne Riedman
Affiliation:
Department of Earth Science, University of California at Santa Barbara, Santa Barbara, California 93106, USA 〈[email protected]〉, 〈[email protected] New address: Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA 〈[email protected]

Abstract

The ca. 780–740 Ma Chuar Group, Grand Canyon, Arizona, provides an exceptional record of life during the diversification of crown-group eukaryotes, just prior to the first Cryogenian glaciation. We document in detail the assemblage of organic-walled microfossils preserved in fine-grained siliciclastics throughout the unit. In contrast with earlier studies, we primarily used SEM to document fossil morphologies, augmented by transmitted light microscopy, FIB-SEM, and TEM. This resulted in the discovery of new species and the recognition of broad-ranging, intraspecific biological and taphonomic variation in other species. Twenty-two species and five unnamed morphotypes are described, including three new species: Kaibabia gemmulella, Microlepidopalla mira, and Volleyballia dehlerae; two new combinations: Galerosphaera walcottii and Lanulatisphaera laufeldii; and 17 previously described forms. The possible colonial green alga Palaeastrum dyptocranum Butterfield in Butterfield, Knoll, and Swett, 1994 and the index fossil Cerebrosphaera globosa (Ogurtsova and Sergeev, 1989) Sergeev and Schopf, 2010 (=C. buickii Butterfield, 1994) are described for the first time from Chuar rocks. Lanulatisphaera laufeldii, a locally abundant and globally widespread species characterized by submicrometer filamentous processes that form a reticulate network, may be a useful marker for the time interval just before the appearance of vase-shaped microfossils (VSMs) ca. 740 Ma.

Organic-walled microfossil assemblages decline in diversity upsection, coincident with the appearance of VSMs and intermittent euxinia within the basin. Whether this pattern is due to preservational bias related to greater water depth or the higher TOC of upper Chuar rocks or instead reflects biotic turnover related to the spread of euxinic water masses in the basin is unknown.

Type
Articles
Copyright
Copyright © 2016, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adl, S.M., et al., 2012, The revised classification of eukaryotes: Journal of Eukaryotic Microbiology, v. 59, p. 429493.CrossRefGoogle ScholarPubMed
Agić, H., Moczydłowska, M., and Yin, L.-M., 2015, Affinity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi, China: Journal of Paleontology, v. 89, p. 2850.CrossRefGoogle Scholar
Arouri, K.R., Greenwood, P.F., and Walter, M.R., 2000, Biological affinities of Neoproterozoic acritarchs from Australia: Microscopic and chemical characterisation: Organic Geochemistry, v. 31, p. 7589.CrossRefGoogle Scholar
Bartley, J.K., 1996, Actualistic taphonomy of Cyanobacteria: Implications for the Precambrian fossil record: Palaios, v. 11, p. 571586.CrossRefGoogle Scholar
Battison, L., and Brasier, M.D., 2012, Remarkably preserved prokaryote and eukaryote microfossils within 1 Ga-old lake phosphates of the Torridon Group, NW Scotland: Precambrian Research, v. 196–197, p. 204217.CrossRefGoogle Scholar
Bernhard, J.M., Buck, K.R., Farmer, M.A., and Bowser, S.S., 2000, The Santa Barbara Basin is a symbiosis oasis: Nature, v. 403, p. 7780.CrossRefGoogle Scholar
Bloeser, B., 1985, Melanocyrillium, a new genus of structurally complex Late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona: Journal of Paleontology, v. 59, p. 741765.Google Scholar
Bloeser, B., Schopf, J.W., Horodyski, R.J., and Breed, W.J., 1977, Chitinozoans from the late Precambrian Chuar Group of the Grand Canyon, Arizona: Science, v. 195, p. 676679.CrossRefGoogle ScholarPubMed
Brocks, J.J., Jarrett, A., Sirantoine, E., Kenig, F., Moczydłowska, M., Porter, S.M., and Hope, J., 2016, Early sponges and toxic protists: Possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth: Geobiology, v. 14, p. 129149 doi:10.1111/gbi.12165.CrossRefGoogle ScholarPubMed
Buchheim, M., Buchheim, J., Carlson, T., Braband, A., Hepperle, D., Krienitz, L., Wolf, M., and Hegewald, E., 2005, Phylogeny of the Hydrodictyaceae (Chlorophyceae): Inferences from rDNA data: Journal of Phycology, v. 41, p. 10391054.CrossRefGoogle Scholar
Budd, G.E., and Jensen, S., 2000, A critical reappraisal of the fossil record of the bilaterian phyla: Biological Reviews, v. 75, p. 253295.CrossRefGoogle ScholarPubMed
Butterfield, N.J., 1990, Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale: Paleobiology, p. 272286.CrossRefGoogle Scholar
Butterfield, N.J., 2009, Modes of pre-Ediacaran multicellularity: Precambrian Research, v. 173, p. 201211.CrossRefGoogle Scholar
Butterfield, N.J., 2015, Early evolution of the Eukaryota: Palaeontology, v. 58, p. 517.CrossRefGoogle Scholar
Butterfield, N.J., and Chandler, F.W., 1992, Palaeoenvironmental distribution of Proterozoic microfossils, with an example from the Agu Bay Formation, Baffin Island: Palaeontology, v. 35, p. 943957.Google Scholar
Butterfield, N.J., Knoll, A.H., and Swett, K., 1994, Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen: Fossils and Strata, v. 34, p. 184.CrossRefGoogle Scholar
Cohen, P.A., and Knoll, A.H., 2012, Scale microfossils from the mid-Neoproterozoic Fifteenmile Group, Yukon Territory: Journal of Paleontology, v. 86, p. 775800.CrossRefGoogle Scholar
Colbath, G.K., and Grenfell, H.R., 1995, Review of biological affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”): Review of Palaeobotany and Palynology, v. 86, p. 287314.CrossRefGoogle Scholar
Combaz, A., Lange, F.W., and Pansart, J., 1967, Les “Leiofusidae” Eisenack, 1938: Review of Palaeobotany and Palynology, v. 167, p. 291307.CrossRefGoogle Scholar
Cotter, K.L., 1999, Microfossils from Neoproterozoic Supersequence 1 of the Officer Basin, Western Australia: Alcheringa, v. 23, p. 6386.CrossRefGoogle Scholar
Couëffé, R., and Vecoli, M., 2011, New sedimentological and biostratigraphic data in the Kwahu Group (Meso- to Neo-Proterozoic), southern margin of the Volta Basin, Ghana: Stratigraphic constraints and implications on regional lithostratigraphic correlations: Precambrian Research, v. 189, p. 155175.CrossRefGoogle Scholar
Dahl, T.W., Canfield, D.E., Rosing, M.T., Frei, R.E., Gordon, G.W., Knoll, A.H., and Anbar, A.D., 2011, Molybdenum evidence for expansive sulfidic water masses in ~750 Ma oceans: Earth and Planetary Science Letters, v. 311, p. 264274.CrossRefGoogle Scholar
Deason, T.R., Silva, P.C., Watanabe, S., and Floyd, G.L., 1991, Taxonomic status of the species of the green algal genus Neochloris : Plant Systematics and Evolution, v. 177, p. 213219.CrossRefGoogle Scholar
Dehler, C.M., 2014, Advances in Neoproterozoic biostratigraphy spark new correlations and insight in evolution of life: Geology, v. 42, p. 731732.CrossRefGoogle Scholar
Dehler, C.M., Prave, A.R., Crossey, L.J., Karlstrom, K.E., Atudorei, V., and Porter, S.M., 2001a, Linking mid-Neoproterozoic successions in the western U.S.: The Chuar Group-Uinta Mountain Group-Pahrump Group connection (ChUMP): Geological Society of America Abstracts with Programs, v. 33, p. 20.Google Scholar
Dehler, C.M., Elrick, M.E., Karlstrom, K.E., Smith, G.A., Crossey, L.J., and Timmons, M.J., 2001b, Neoproterozoic Chuar Group (~800–742 Ma), Grand Canyon: A record of cyclic marine deposition during global climatic and tectonic transitions: Sedimentary Geology, v. 141–142, p. 465499.CrossRefGoogle Scholar
Dehler, C., Elrick, M., Bloch, J., Crossey, L., Karlstrom, K., and Des Marais, D.J., 2005, High-resolution δ13C stratigraphy of the Chuar Group (ca. 770–742), Grand Canyon: Implications for mid-Neoproterozoic climate change: Geological Society of America Bulletin, v. 117, p. 3245.CrossRefGoogle Scholar
Dehler, C.M., Porter, S.M., de Grey, L.D., Sprinkel, D.A., and Brehm, A., 2007, The Neoproterozoic Uinta Mountain Group revisited: A synthesis of recent work on the Red Pine Shale and undivided clastic strata, northeastern Utah, U.S.A., in Link, P.K., and Lewis, R., eds., Proterozoic Geology of Western North American and Siberia: SEPM Special Publication, v. 86, p. 151166.CrossRefGoogle Scholar
Dehler, C.M., Porter, S.M., and Timmons, J.M., 2012, The Neoproterozoic Earth system revealed from the Chuar Group of Grand Canyon, in Timmons, J.M., and Karlstrom, K.E., eds., Grand Canyon Geology: Two Billion Years of Earth’s History: Geological Society of America Special Paper 489, p. 4972.Google Scholar
Dehler, C.M., Gehrels, G., Porter, S.M., Cox, G., Heizler, M.T., Karlstrom, K.E., and Crossey, L.J., 2014, ChUMP (Chuar-Uinta Mountain-Pahrump) strata of the western U.S. record Cretaceous-like ocean anoxia events (OAEs) before Snowball Earth: Geological Society of America Abstracts with Programs, v. 46, p. 627.Google Scholar
Dodge, J.D., 1989, Some revisions of the family Gonyaulacaceae (Dinophyceae) based on a scanning electron microscope study: Botanica Marina, v. 32, p. 275298.CrossRefGoogle Scholar
Downie, C., 1963, ‘Hystrichospheres’ (acritarchs) and spores of the Wenlock Shales (Silurian) of Wenlock, England: Palaeontology, v. 6, p. 625652.Google Scholar
Eisenack, A, 1938, Neue Mikrofossilien des baltischen Silurs. IV.: Palaeontologisch Zeitschrift, v. 19(no. 3–4), p. 217243. pl. 15–16.CrossRefGoogle Scholar
Eisenack, A., 1955, Chitinozoen, Hystrichosphären und andere Mikrofossilien aus dem Beyrichia-Kalk: Senckenbergiana lethaea, v. 36, p. 157188.Google Scholar
Eisenack, A., 1958a, Mikrofossilien aus dem Ordovizium des Baltikums: Senckenbergiana lethaea, v. 39, p. 389405.Google Scholar
Eisenack, A., 1958b, Tasmanites Newton 1875 und Leiosphaeridia n. g. als Gattungen der Hystrichosphaeridea: Palaeontographica Abteilung A, v. 110, p. 119.Google Scholar
Eisenack, A., 1965, Mikrofossilien aus dem Silur Gotlands. Hystrichosphären, Problematika: Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, v. 122, p. 257274.Google Scholar
Eisenack, A., 1976, Mikrofossilien aus dem Vaginatenkalk von Hälludden, Öland: Palaeontographica Abteilung A, v. 154, p. 181203.Google Scholar
Ellegaard, M., 2000, Variations in dinoflagellate cyst morphology under conditions of changing salinity during the last 2000 years in the Limfjord, Denmark: Review of Palaeobotany and Palynology, v. 109, p. 6581.CrossRefGoogle ScholarPubMed
Elston, D.P., 1989, Middle and late Proterozoic Grand Canyon Supergroup, Arizona, in Elston, D.P., Billingsley, G.H., and Young, R.A., eds., Geology of the Grand Canyon, Northern Arizona (with Colorado River Guides): Lee Ferry to Pierce Ferry, Arizona, Washington, D.C., American Geophysical Union, p. 94105.CrossRefGoogle Scholar
Evitt, W.R., 1963, A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, II: Proceedings of the National Academy of Sciences of the United States of America, v. 49, p. 298.CrossRefGoogle ScholarPubMed
Fensome, R.A., Williams, G.L., Barss, M.S., Freeman, J.M., and Hill, J.M., 1990, Acritarchs and Fossil Prasinophytes: An Index to Genera, Species and Infraspecific Taxa, Dallas, American Association of Stratigraphic Palynologists Foundation, 771, p.Google Scholar
Foissner, W., Müller, H., and Agatha, S., 2007, A comparative fine structural and phylogenetic analysis of resting cysts in oligotrich and hypotrich Spirotrichea (Ciliophora): European Journal of Protistology, v. 43, p. 295314.CrossRefGoogle ScholarPubMed
Ford, T.D., and Breed, W.J., 1969, Preliminary geologic report of the Chuar Group, Grand Canyon, Arizona: Four Corners Geological Society Guidebook, p. 114122.Google Scholar
Ford, T.D., and Breed, W.J., 1973a, Late Precambrian Chuar Group, Grand Canyon, Arizona: Geological Society of America Bulletin, v. 84, p. 12431260.2.0.CO;2>CrossRefGoogle Scholar
Ford, T.D., and Breed, W.J., 1973b, The problematical fossil Chuaria : Palaeontology, v. 16, p. 535550.Google Scholar
Gao, L., Xing, Y., and Liu, G., 1995, Neoproterozoic micropalaeoflora from Hunjiang area, Jilin Province and its sedimentary environment: Professional Papers of Stratigraphy and Palaeontology, v. 26, p. 127.Google Scholar
Golubic, S., and Campbell, S.E., 1979, Analogous microbial forms in recent subaerial habitats and in Precambrian cherts: Gloethece coerulea Geitler and Eosynechococcus moorei Hofmann: Precambrian Research, v. 8, p. 201217.CrossRefGoogle Scholar
Graham, L.E., and Wilcox, L.W., 2000, Algae, Upper Saddle River, NJ, Prentice-Hall, 640 p.Google Scholar
Grey, K., 1999, A modified palynological preparation technique for the extraction of large Neoproterozoic acanthomorph acritarchs and other acid-insoluble microfossils: Western Australia Geological Survey, Record 1999/10, 23 p.Google Scholar
Grey, K., and Willman, S., 2009, Taphonomy of Ediacaran acritarchs from Australia: Significance for taxonomy and biostratigraphy: Palaios, v. 24, p. 239256.CrossRefGoogle Scholar
Grey, K., Hill, A.C., and Calver, C., 2011, Biostratigraphy and stratigraphic subdivision of Cryogenian successions of Australia in a global context, in Arnaud, E., Halverson, G.P., and Shields-Zhou, G., eds., The Geological Record of Neoproterozoic Glaciations: Geological Society London, Memoirs 36, p. 113134.Google Scholar
Hemsley, A.R., Lewis, J., and Griffiths, P.C., 2004, Soft and sticky development: Some underlying reasons for microarchitectural pattern convergence: Review of Palaeobotany and Palynology, v. 130, p. 105119.CrossRefGoogle Scholar
Hermann, T.N., 1974, Nakhodki massovykh skoplenii trikhomov v rifee [Findings of mass accumulations of trichomes in the Riphean], in Timofeev, B.V., ed., Mikrofitofossilii Proterozoia i rannego Paleozoia SSSR [Microfossils of the Proterozoic and early Paleozoic, USSR], Leningrad, Nauka, p. 610 [in Russian].Google Scholar
Hill, A.C., Cotter, K.L., and Grey, K., 2000, Mid-Neoproterozoic biostratigraphy and isotope stratigraphy in Australia: Precambrian Research, v. 100, p. 281298.CrossRefGoogle Scholar
Hofmann, H.J., 1976, Precambrian microflora, Belcher Islands, Canada: Significance and systematics: Journal of Paleontology, v. 50, p. 10401073.Google Scholar
Hofmann, H.J., 1999, Global distribution of the Proterozoic sphaeromorph acritarch Valeria lophostriata (Jankauskas): Acta Micropalaeontologica Sinica, v. 16, p. 215224.Google Scholar
Hofmann, H.J., and Jackson, G.D., 1994, Shale-facies microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada: Memoir (The Paleontological Society), v. 37, p. 139.Google Scholar
Hughes Martiny, J.B., Bohannan, B.J.M., Brown, J.H., Colwell, R.K., Fuhrman, J.A., Green, J.L., Horner-Devine, M.C., Kane, M., Krumins, J.A., and Kuske, C.R., 2006, Microbial biogeography: Putting microorganisms on the map: Nature Reviews Microbiology, v. 4, p. 102112.CrossRefGoogle Scholar
Jankauskas, T.V., 1979a, Nizhnerifeiskie mikrobioty Iuzhnogo Urala (Lower Riphean microbiotas of the southern Urals): Akademii Nauk SSSR, Doklady [Proceedings of the USSR Academy of Sciences], v. 247, p. 14651467 [in Russian].Google Scholar
Jankauskas, T.V., 1979b, Srednerifeyski microbiota Yuzhnogo Urala i Bashkirskogo Priural’ya [Middle Riphean microbiota of the southern Urals and the Ural region in Bashkiria]: Akademii Nauk SSSR, Doklady [Proceedings of the USSR Academy of Sciences], v. 248, p. 190193 [in Russian].Google Scholar
Jankauskas, T.V., 1980, Shisheniakskaia mikrobiota Verkhnego Rifeia Iuzhnogo Urala [Shisheniak microbiota of the upper Riphean of the Southern Urals]: Akademii Nauk SSSR, Doklady [Proceedings of the USSR Academy of Sciences], v. 251, p. 190192 [in Russian].Google Scholar
Jankauskas, T.V., 1982, Mikrofossilii rifeiia Iuzhnogo Urala [Microfossils of the Riphean of the South Urals], in Keller, B.M., ed., Stratotip Rifeya-Paleontologiya paleomagnetizm [Riphean Stratotype: Paleontology and Paleomagnetism]: Akademiya Nauk SSSR Transactions, Volume 368, Moscow, Nauka, p. 84120. plates, p. 31–48 [in Russian].Google Scholar
Jankauskas, T., Mikhailova, N., and Hermann, T.N., 1989, Mikrofossilii Dokembriia SSSR [Precambrian Microfossils of the USSR], Leningrad, Nauka, 191 p. [in Russian].Google Scholar
Javaux, E.J., 2011, Early eukaryotes in Precambrian oceans, in Gargaud, M., Lopez-Garcia, P., and Martin, H., eds., Origins and Evolution of Life: An Astrobiology Perspective, New York, Cambridge University Press, p. 414449.CrossRefGoogle Scholar
Javaux, E.J., and Marshal, C.P., 2006, A new approach in deciphering early protist paleobiology and evolution: Combined microscopy and microchemistry of single Proterozoic acritarchs: Review of Palaeobotany and Palynology, v. 139, p. 115.CrossRefGoogle Scholar
Javaux, E.J., Knoll, A.H., and Walter, M.R., 2001, Morphological and ecological complexity in early eukaryotic ecosystems: Nature, v. 412, p. 6669.CrossRefGoogle ScholarPubMed
Javaux, E.J., Knoll, A.H., and Walter, M.R., 2004, TEM evidence for eukaryotic diversity in mid-Proterozoic oceans: Geobiology, v. 2, p. 121132.CrossRefGoogle Scholar
Johnston, D.T., Poulton, S.W., Dehler, C., Porter, S., Husson, J., Canfield, D.E., and Knoll, A.H., 2010, An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA: Earth and Planetary Science Letters, v. 290, p. 6473.CrossRefGoogle Scholar
Karlstrom, K.E., et al. 2000, Chuar Group of the Grand Canyon: Record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma: Geology, v. 28, p. 619622.2.0.CO;2>CrossRefGoogle ScholarPubMed
Knoll, A.H., 1984, Microbiotas of the late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard: Journal of Paleontology, v. 58, 131162.Google Scholar
Knoll, A.H., 1996, Archean and Proterozoic paleontology, in Jansonius, J., and McGregor, D.C., eds., Palynology: Principles and Applications, Volume 1, Dallas, American Association of Stratigraphic Palynologists Foundation, p. 5180.Google Scholar
Knoll, A.H., 2014, Paleobiological perspectives on early eukaryote evolution: Cold Spring Harbor Perspectives in Biology, v. 6, a016121.CrossRefGoogle Scholar
Knoll, A.H., and Calder, S., 1983, Microbiotas of the late Precambrian Ryssö Formation, Nordaustlandet, Svalbard: Palaeontology, v. 26, p. 467496.Google Scholar
Knoll, A.H., and Swett, K., 1985, Micropalaeontology of the late Proterozoic Veteranen Group, Spitsbergen: Palaeontology, v. 28, p. 451473.Google Scholar
Knoll, A.H., Swett, K., and Mark, J., 1991, Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: The Draken Conglomerate Formation, Spitsbergen: Journal of Paleontology, v. 65, p. 531570.CrossRefGoogle ScholarPubMed
Knoll, A.H., Javaux, E.J., Hewitt, D., and Cohen, P., 2006, Eukaryotic organisms in Proterozoic oceans: Philosophical Transactions of the Royal Society B, v. 361, p. 10231038.CrossRefGoogle ScholarPubMed
Kokinos, J.P., and Anderson, D.M., 1995, Morphological development of resting cysts in cultures of the marine dinoflagellate Lingulodinium polyedrum (=L. machaerophorum): Palynology, v. 19, p. 143166.CrossRefGoogle Scholar
Leander, B.S., Witek, R.P., and Farmer, M.A., 2001, Trends in the evolution of the euglenid pellicle: Evolution, v. 55, p. 22152235.Google ScholarPubMed
Lewis, J., and Hallett, R., 1997, Lingulodinium polyedrum (Gonyaulax polyedra) a blooming dinoflagellate, in Ansell, A.D., Gibson, R.N., and Barnes, M., eds., Oceanography and Marine Biology: An Annual Review, Volume 35, London, UCL Press, p. 97161.Google Scholar
Lewis, L.A., and McCourt, R.M., 2004, Green algae and the origin of land plants: American Journal of Botany, v. 91, p. 15351556.CrossRefGoogle ScholarPubMed
Li, Z.-X., Evans, D.A.D., and Halverson, G.P., 2013, Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland: Sedimentary Geology, v. 294, p. 219232.CrossRefGoogle Scholar
Lindgren, S., 1982, Algal coenobia and leiospheres from the Upper Riphean of the Turukhansk region, eastern Siberia: Stockholm Contributions in Geology, v. 38, p. 3545.Google Scholar
Logares, R., Bråte, J., Bertilsson, S., Clasen, J.L., Shalchian-Tabrizi, K., and Rengefors, K., 2009, Infrequent marine–freshwater transitions in the microbial world: Trends in Microbiology, v. 17, p. 414422.CrossRefGoogle ScholarPubMed
Marchant, H.J., 1977, Cell division and colony formation in the green alga Coelastrum (Chlorococcales): Journal of Phycology, v. 13, p. 102110.CrossRefGoogle Scholar
McManus, H.A., and Lewis, L.A., 2011, Molecular phylogenetic relationships in the freshwater family Hydrodictyaceae (Sphaeropleales, Chlorophyceae), with an emphasis on Pediastrum duplex : Journal of Phycology, v. 47, p. 152163.CrossRefGoogle ScholarPubMed
Mertens, K.N., et al., 2009, Process length variation in cysts of a dinoflagellate, Lingulodinium machaerophorum, in surface sediments: Investigating its potential as salinity proxy: Marine Micropaleontology, v. 70, p. 5469.CrossRefGoogle Scholar
Moczydłowska, M., 2010, Life cycle of early Cambrian microalgae from the Skiagia-plexus acritarchs: Journal of Paleontology, v. 84, p. 216230.CrossRefGoogle Scholar
Moczydłowska, M., and Willman, S., 2009, Ultrastructure of cell walls in ancient microfossils as a proxy to their biological affinities: Precambrian Research, v. 173, p. 2738.CrossRefGoogle Scholar
Nagovitsin, K., 2009, Tappania-bearing association of the Siberian platform: Biodiversity, stratigraphic position and geochronological constraints: Precambrian Research, v. 173, p. 137145.CrossRefGoogle Scholar
Nagy, R.M., and Porter, S.M., 2005, Paleontology of the Neorproterozoic Uinta Mountain Group, in Dehler, C.M., Pederson, J.L., Sprinkel, D.A., and Kowallis, B.J., eds., Uinta Mountain Geology: Utah Geological Association Publication 33, p. 4962.Google Scholar
Nagy, R.M., Porter, S.M., Dehler, C.M., and Shen, Y., 2009, Biotic turnover driven by eutrophication before the Sturtian low-latitude glaciation: Nature Geoscience, v. 2, p. 415418.CrossRefGoogle Scholar
Naumova, S.N., 1949, Spory nizhnego Kembriia [Spores of the lower Cambrian]: Izvestiia Akademii Nauka, Seriia Geologicheskaia [Bulletin of the Academy of Sciences of the USSR, Geologic Series], v. 1949, no. 4, p. 4956 [in Russian].Google Scholar
Naumova, S.N., 1950, Spory nizhnego Silura [Spores of the lower Silurian): Trudy Konferentsii po Sporovo-Pyltsevomu Analizu, 1948 Goda, Geografischeskii Facultet, Izdatelstvo Moskovskogo Universita [Proceedings from the Conference on Pollen Analysis, 1948], Moscow, Moscow University Press, p. 165190 [in Russian].Google Scholar
Ogurtsova, R.N., and Sergeev, V.N., 1989, Megasferomorfidy Chichkanskoi svity verkhnego Dokembriia iuzhnogo Kazakhstana [Megaspheromorphids from the upper Precambrian Chichkan Formation, southern Kazakhstan]: Paleontologicheskii Zhurnal [Paleontological Journal], v. 1989, no. 2, p. 119122 [in Russian].Google Scholar
Pang, K., Tang, Q., Schiffbauer, J.D., Yao, J., Yuan, X., Wan, B., Chen, L., Ou, Z., and Xiao, S., 2013, The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils: Geobiology, v. 11, p. 499510.CrossRefGoogle ScholarPubMed
Peat, C.J., Muir, M.D., Plumb, K.A., McKirdy, D.M., and Norvick, M.S., 1978, Proterozoic microfossils from the Roper Group, Northern Territory, Australia: BMR Journal of Australian Geology & Geophysics, v. 3, p. 117.Google Scholar
Peng, Y., Bao, H., and Yuan, X., 2009, New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China: Precambrian Research, v. 168, p. 223232.CrossRefGoogle Scholar
Popper, Z.A., Michel, G., Hervé, C., Domozych, D.S., Willats, W.G.T., Tuohy, M.G., Kloareg, B., and Stengel, D.B., 2011, Evolution and diversity of plant cell walls: From algae to flowering plants: Annual Review of Plant Biology, v. 62, p. 567590.CrossRefGoogle ScholarPubMed
Porter, S.M., 2004, The fossil record of early eukaryotic diversification: Paleontological Society Papers, v. 10, p. 3550.CrossRefGoogle Scholar
Porter, S.M., and Knoll, A.H., 2000, Testate amoebae in the Neoproterozoic Era: Evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon: Paleobiology, v. 26, p. 360385.2.0.CO;2>CrossRefGoogle Scholar
Porter, S.M., Meisterfeld, R., and Knoll, A.H., 2003, Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A classification guided by modern testate amoebae: Journal of Paleontology, v. 77, p. 409429.2.0.CO;2>CrossRefGoogle Scholar
Porter, S.M., Dehler, C.M., Moore, J.L., Riedman, L.A., and Wang, S.C., 2013, Possible scale-bearing protists in the mid-Neoproterozoic Chuar Group, Grand Canyon, and Uinta Mountain Group, Utah: Geological Society of America Abstracts with Programs, v. 45, p. 693.Google Scholar
Pyatiletov, V.G., 1980, O nakhodkakh mikrofossilii roda Navifusa v Lakhandinskoi Svite [On the discovery of microfossils in the genus Navifusa in the Lakhanda Formation]: Paleontologicheskii Zhurnal [Paleontological Journal], v. 1980,no. 3, p. 143145 [in Russian].Google Scholar
Riedman, L.A., and Porter, S.M., 2016, High morphological diversity of organic-walled microfossils from the Neoproterozoic Alinya Formation, Officer Basin, Australia: Journal of Paleontology, p. 854887.CrossRefGoogle Scholar
Riedman, L.A., and Sadler, P.M., 2015, Global species richness record and biostratigraphic potential of early to middle Neoproterozoic eukaryote fossils: Geological Society of America Abstracts with Programs, v. 47, p. 212.Google Scholar
Riedman, L.A., Porter, S.M., Halverson, G.P., Hurtgen, M.T., and Junium, C.K., 2014, Organic-walled microfossil assemblages from glacial and interglacial Neoproterozoic units of Australia and Svalbard: Geology, v. 42, p. 10111014.CrossRefGoogle Scholar
Samuelsson, J., 1997, Biostratigraphy and palaeobiology of early Neoproterozoic strata of the Kola Peninsula, Northwest Russia: Norsk Geologisk Tidsskrift, v. 77, p. 165192.Google Scholar
Samuelsson, J., and Butterfield, N.J., 2001, Neoproterozoic fossils from the Franklin Mountains, northwestern Canada: Stratigraphic and paleobiological implications: Precambrian Research, v. 107, p. 235251.CrossRefGoogle Scholar
Samuelsson, J., Dawes, P.R., and Vidal, G., 1999, Organic-walled microfossils from the Proterozoic Thule Supergroup, Northwest Greenland: Precambrian Research, v. 96, p. 123.CrossRefGoogle Scholar
Schiffbauer, J.D., and Xiao, S., 2009, Novel application of focused ion beam electron microscopy (FIB-EM) in preparation and analysis of microfossil ultrastructures: A new view of complexity in early eukaryotic organisms: Palaios, v. 24, p. 616626.CrossRefGoogle Scholar
Schopf, J.W., 1968, Microflora of the Bitter Springs Formation, late Precambrian, central Australia: Journal of Paleontology, v. 42, p. 651688.Google Scholar
Schopf, J.W., 1992, Atlas of representative Proterozoic microfossils, in Schopf, J.W., and Klein, C., eds., The Proterozoic Biosphere, Cambridge, Cambridge University Press, p. 10571117.CrossRefGoogle Scholar
Schopf, J.W., Ford, T.D., and Breed, W.J., 1973, Microorganisms from the late Precambrian of the Grand Canyon, Arizona: Science, v. 179, p. 13191321.CrossRefGoogle ScholarPubMed
Semikhatov, M.A., Ovchinnikova, G.V., Gorokhov, I.M., Kuznetsov, A.B., Vasil eva, I.M., Gorokhovskii, B.M., and Podkovyrov, V.N., 2000, Isotope age of the middle-upper Riphean boundary: Pb-Pb geochronology of the Lakhanda Group carbonates, eastern Siberia: Doklady Earth Science, v. 372, p. 625629.Google Scholar
Sergeev, V.N., 2006, Okremnennye mikrofossilii Dokembriia: Priroda, klassifikatsiia I biostratigraficheskoe znachenie [Precambrian Microfossils in Cherts: Their Paleobiology, Classification, and Biostratigraphic Usefulness], Moscow, Geos, 280 p. [in Russian].Google Scholar
Sergeev, V.N., and Schopf, J.W., 2010, Taxonomy, paleoecology and biostratigraphy of the late Neoproterozoic Chichkan microbiota of South Kazakhstan: The marine biosphere on the eve of metazoan radiation: Journal of Paleontology, v. 84, p. 363401.CrossRefGoogle Scholar
Shields-Zhou, G., Porter, S.M., and Halverson, G.P., 2016, A new rock-based definition for the Cryogenian Period: Episodes, v. 39, p. 38.CrossRefGoogle Scholar
Simonetti, C., and Fairchild, T.R., 2000, Proterozoic microfossils from subsurface siliciclastic rocks of the São Francisco Craton, south-central Brazil: Precambrian Research, v. 103, p. 129.CrossRefGoogle Scholar
Stein, F.V., 1883, Der Organismus der Infusionthiere. III. Abtheilung. II. Hälfte. Die Naturgeschichte der Arthrodelen Flagellaten, Leipzig, Wilhelm Engelmann, 81 p.Google Scholar
Strauss, J.V., Rooney, A.D., Macdonald, F.A., Brandon, A.D., and Knoll, A.H., 2014, 740 Ma vase-shaped microfossils from Yukon, Canada: Implications for Neoproterozoic chronology and biostratigraphy: Geology, v. 42, p. 659662.CrossRefGoogle Scholar
Summons, R.E., Brassell, S.C., Eglinton, G., Evans, E., Horodyski, R.J., Robinson, N., and Ward, D.M., 1988, Distinctive hydrocarbon biomarkers from fossiliferous sediment of the late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona: Geochimica et Cosmochimica Acta, v. 52, p. 26252637.CrossRefGoogle Scholar
Tang, Q., Pang, K., Xiao, S., Yuan, X., Ou, Z., and Wan, B., 2013, Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance: Precambrian Research, v. 236, p. 157181.CrossRefGoogle Scholar
Tang, Q., Pang, K., Yuan, X., Wan, B., and Xiao, S., 2015, Organic-walled microfossils from the Tonian Gouhou Formation, Huaibei region, North China Craton, and their biostratigraphic implications: Precambrian Research, v. 266, p. 296318.CrossRefGoogle Scholar
Timmons, J.M., Karlstrom, K.E., Dehler, C.M., Geissman, J.W., and Heizler, M.T., 2001, Proterozoic multistage (~1.1 and ~0.8 Ga) extension in the Grand Canyon Supergroup and establishment of northwest and north-south tectonic grains in the southwestern United States: Geological Society of America Bulletin, v. 113, p. 163180.2.0.CO;2>CrossRefGoogle Scholar
Timofeev, B.V., 1959, Drevneishaia flora Pribaltiki i ee stratigraficheskoe znachenie [Ancient flora of the Baltic states and its stratigraphic significance]: Vseoyuznyi Neftyanoi Naucho-Issledovatelskii Geologorazvedochnyi [Proceedings of the Union Petroleum Research Exploration Institute], Leningrad, VNIGRI, 129, p. 1136, pl. 1–24 [in Russian].Google Scholar
Timofeev, B.V., 1966, Mikropaleofitologicheskoe Issledovanie Drevnikh Svit [Micropaleophytological research into ancient strata], Moscow, Nauka [USSR Academy of Sciences], 89 pl. 126 p. [in Russian].Google Scholar
Timofeev, B.V., and Hermann, T.N., 1979, Dokembriiskaia mikrobiota Lakhandinskoi svity [Precambrian Microbiota of the Lakhanda Formation], in Sokolov, B.S., ed., Paleontologiia Dokembriia i Rannego Kembriia [Paleontology of the Precambrian and early Cambrian], Leningrad, Nauka, p. 137147 [in Russian].Google Scholar
Timofeev, B.V., Hermann, T.N., and Mikhailova, N.S., 1976, Mikrofitofossilii Dokembriia, Kembriia i Ordovika [Plant Microfossils of the Precambrian, Cambrian, and Ordovician], Leningrad, Scientific Institute of Precambrian Geology and Geochronology, 106 p. [in Russian].Google Scholar
Tippery, N.P., Fučiková, K., Lewis, P.O., and Lewis, L.A., 2012, Probing the monophyly of the Sphaeropleales (Chlorophyceae) using data from five genes: Journal of Phycology, v. 48, p. 14821493.CrossRefGoogle ScholarPubMed
Tynni, R., and Donner, J., 1980, A microfossil and sedimentation study of the late Precambrian formation of Hailuoto, Finland: Geological Survey of Finland, Bulletin 311, 27 p, 8 pl.Google Scholar
Tynni, R., and Uutela, A., 1984, Microfossils from the Precambrian Muhos Formation in Western Finland: Geological Survey of Finland, Bulletin 330, 38 p, 20 pl.Google Scholar
Ventura, G.T., Kenig, F., Grosjean, E., and Summons, R.E., 2005, Biomarker analysis of solvent extractable organic matter from the Neoproterozoic Kwagunt formation, Chuar group (~800–742 Ma), Grand Canyon, 22nd International Meeting on Organic Geochemistry, Volume 2: Seville, p. Abstr. PB 2–19.Google Scholar
Vidal, G., 1976a, Late Precambrian acritarchs from the Eleonore Bay Group and Tillite Group in East Greenland: Grønlands Geologiske Undersøgelse, v. 78, p. 119.CrossRefGoogle Scholar
Vidal, G., 1976b, Late Precambrian microfossils from the Visingsö Beds in southern Sweden: Fossils and Strata, v. 9, p. 157.CrossRefGoogle Scholar
Vidal, G., 1979, Acritarchs from the upper Proterozoic and lower Cambrian of East Greenland: Grønlands Geologiske Undersøgelse Bulletin, v. 134, p. 155.CrossRefGoogle Scholar
Vidal, G., 1981, Micropalaeontology and biostratigraphy of the upper Proterozoic and lower Cambrian sequence in East Finnmark, northern Norway: Norges Geologiske Undersøkelse Bulletin, v. 362, p. 153.Google Scholar
Vidal, G., and Ford, T.D., 1985, Microbiotas from the late Proterozoic Chuar Group (Northern Arizona) and Uinta Mountain Group (Utah) and their chronostratigraphic implications: Precambrian Research, v. 28, p. 349389.CrossRefGoogle Scholar
Vidal, G., and Siedlecka, A., 1983, Planktonic, acid-resistant microfossils from the upper Proterozoic strata of the Barents Sea region of Varanger Peninsula, East Finnmark, northern Norway: Norges Geologiske Undersøkelse Bulletin, v. 382, p. 4579.Google Scholar
Vorob’eva, N.G., Sergeev, V.N., and Knoll, A.H., 2009, Neoproterozoic microfossils from the northeastern margin of the East European platform: Journal of Paleontology, v. 83, p. 161196.CrossRefGoogle Scholar
Vorob’eva, N.G., Sergeev, V.N., and Petrov, P.Yu., 2015, Kotuikan Formation assemblage: A diverse organic-walled microbiota in the Mesoproterozoic Anabar succession, northern Siberia: Precambrian Research, v. 256, p. 201222.CrossRefGoogle Scholar
Walcott, C.D., 1899, Precambrian fossiliferous formations: Geological Society of America Bulletin, v. 10, p. 199244.CrossRefGoogle Scholar
Weil, A.B., Geissman, J.W., and Van der Voo, R., 2004, Paleomagnetism of the Neoproterozoic Chuar Group, Grand Canyon Supergroup, Arizona: Implications for Laurentia’s Neoproterozoic APWP and Rodinia breakup: Precambrian Research, v. 129, p. 7192.CrossRefGoogle Scholar
Yin, L., and Guan, B., 1999, Organic-walled microfossils of Neoproterozoic Dongjia Formation, Lushan County, Henan Province, North China: Precambrian Research, v. 94, p. 121137.CrossRefGoogle Scholar
Yin, L., and Sun, W., 1994, Microbiota from the Neoproterozoic Liulaobei Formation in the Huainan region, northern Anhui, China: Precambrian Research, v. 65, p. 95114.CrossRefGoogle Scholar
Zang, W.L., 1995, Early Neoproterozoic sequence stratigraphy and acritarch biostratigraphy, eastern Officer Basin, South Australia: Precambrian Research, v. 74, p. 119175.CrossRefGoogle Scholar
Zang, W.L., and Walter, M.R., 1992a, Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia: Memoirs of the Association of Australasian Palaeontologists, v. 12, p. 1132.Google Scholar
Zang, W.L., and Walter, M.R., 1992b, Late Proterozoic and early Cambrian microfossils and biostratigraphy, northern Anhui and Jiangsu, central-eastern China: Precambrian Research, v. 57, p. 243323.Google Scholar
Zhang, Y., 1988, Proterozoic stromatolitic micro-organisms from Hebei, North China: Cell preservation and cell division: Precambrian Research, v. 38, p. 165175.CrossRefGoogle Scholar