Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-18T19:22:14.736Z Has data issue: false hasContentIssue false

Stem structure and evolution in the earliest pelmatozoan echinoderms

Published online by Cambridge University Press:  14 July 2015

Sebastien Clausen
Affiliation:
1Laboratoire de Paléontologie et Paléogéographie du Paléozoïque, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq Cedex, France,
Andrew B. Smith
Affiliation:
2Department of Palaeontology, the Natural History Museum, Cromwell Road, London SW7 5BD, UK,

Abstract

Echinoderm skeletal debris from the Early-Middle Cambrian boundary Micmacca Breccia of Morocco includes the oldest known holomeric columnals. the original calcite of these ossicles is coated and replaced by iron oxides, occasionally overlain by a late coating of silica, and preserves with high fidelity fine details of their three-dimensional microstructure. Irrespective of their external morphology, columnals can be divided into three groups based on the distribution of stereom microfabrics, which we suggest indicates the presence of at least three different holomeric stemmed taxa. One of these columnal types has well-developed galleried stereom perpendicular to its articulation facets, a sure sign that long, penetrative collagen bundles bound columnals together, as in modern stemmed crinoids. This columnal morphology also shows a primitive type of interlocking articulation, which we term parasymplexy and which may have helped to counter torsional stresses. the two other columnals either lacked fibrous connective tissue or had shallow, non-penetrative fibers between columnals.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvaro, J. J., Elicki, O., Geyer, G., and Rushton, A. W. A. 2003. Palaeogeographical controls on the Cambrian trilobite immigration and evolutionary patterns reported in the western Gondwana margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 195:535.CrossRefGoogle Scholar
Álvaro, J. J. and Clausen, S. 2005. Major geodynamic and sedimentary constraints on the chronostratigraphic correlation of the Lower-Middle Cambrian transition in the western Mediterranean region. Geosciences Journal, 9:145160.CrossRefGoogle Scholar
Álvaro, J. J. and Clausen, S. 2006. Microbial crusts as indicators of stratigraphic diastems in the Cambrian Micmacca Breccia, Moroccan Atlas. Sedimentary Geology, 185:255265.CrossRefGoogle Scholar
Álvaro, J. J. and Clausen, S.In press. Paleoenvironmental significance of hiatal shell accumulations in a Cambrian epeirogenic platform. Geological Society of Canada, Special Volume.Google Scholar
Ausich, W. I. 1996. Origin of the Crinoidea, p. 127132. In Mooi, R. and Telford, M. (eds.), Echinoderms: San Francisco. A. A. Balkema, Rotterdam.Google Scholar
Ausich, W. I. 1997. Calyx plate homologies and early evolutionary history of the Crinoidea, p. 289304. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. The Paleontological Society Papers, 3.Google Scholar
Ausich, W. I. 1998a. Origin of crinoids, p. 237242. In Candia Carnevali, M. D. and Bonasoro, F. (eds.), Echinoderm Research 1998. A. A. Balkema, Rotterdam.Google Scholar
Ausich, W. I. 1998b. Early phylogeny and subphylum division of the Crinoidea (Phylum Echinodermata). Journal of Paleontology, 72:499510.CrossRefGoogle Scholar
Ausich, W. I. 1998c. Phylogeny of Arenig to Caradoc crinoids (Phylum Echinodermata) and suprageneric classification of the Crinoidea. The University of Kansas Paleontological Contributions, New Series, 9:136.Google Scholar
Ausich, W. I. and Babcock, L. E. 1998. The phylogenetic position of Echmatocrinus brachiatus, a probable octacoral from the Burgess Shale. Palaeontology, 41:193202.Google Scholar
Ausich, W. I. and Babcock, L. E. 2000. Echmatocrinus, a Burgess Shale animal reconsidered. Lethaia, 33:9294.CrossRefGoogle Scholar
Ausich, W. I. and Baumiller, T. K. 1998. Disarticulation patterns in Ordovician crinoids: Implications for the evolutionary history of connective tissue in the Crinoidea. Lethaia, 31:113123.CrossRefGoogle Scholar
Bather, F. A. 1900. The echinoderms, p. 1216. In Lankester, E. R. (ed.), A Treatise On Zoology, pt. 3, Adams and Charles Black, London.Google Scholar
Berg-Madsen, V. 1986. Middle Cambrian cystoid (sensu lato) stem columnals from Bornholm, Denmark. Lethaia, 19:6780.CrossRefGoogle Scholar
Bockelie, J. F. 1982. Morphology, growth and taxonomy of the Ordovician rhombiferan Caryocystites. Geoloiska Foreningens I Stockholm Forhandlinger, 103:499513.CrossRefGoogle Scholar
Bottjer, D. J., Hagadorn, J. W., and Dornbos, S. Q. 2000. The Cambrian substrate revolution. GSA Today, 10(9):17.Google Scholar
Breimer, A. and Ubaghs, G. 1974. A critical comment on the classification of the pelmatozoam echinoderms I and II. Koninklijke Nederlandse Akademie voor Wetenschappen, proceedings, series B, 77:398417.Google Scholar
Brett, C. E. 1981. Terminology and functional morphology of attachment structures in pelmatozoan echinoderms. Lethaia, 14:343370.CrossRefGoogle Scholar
Broadhead, T. W. 1982. Reappraisal of class Eocrinoidea (Echinodermata), p. 125131. In Lawrence, J. M. (ed.), Echinoderms: Proceedings of the International Conference, Tampa Bay. A. A. Balkema, Rotterdam.Google Scholar
Buch, C. L. von. 1846 (1844). Über Cystideen eingeleitet durch die Entwicklung der Eingenthümlickeiten von Cariocrinus ornatus Say. Berichte über die zur Bekanntmachung geeigneten Verhandlungen der Königl.-Preuß, Akademie der Wissenschaften zu Berlin, 14:89116.Google Scholar
Clausen, S. 2004. New Early Cambrian eocrinoids from the Iberian Chains (NE Spain) and their role in nonreefal benthic communities. Eclogae Geologicae Helvetiae, 97:371379CrossRefGoogle Scholar
Clausen, S. and Smith, A. B. 2005. Palaeoanatomy and biological affinities of a Cambrian problematic deuterostome (Stylophora). Nature, 438:351354.CrossRefGoogle Scholar
Conway Morris, S. 1993. The fossil record and early evolution of the Metazoa. Nature, 361:219225.CrossRefGoogle Scholar
David, B., Lefebvre, B., Mooi, R., and Parsley, R. 2000. Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology, 26:529554.2.0.CO;2>CrossRefGoogle Scholar
Dean, J. 2005. Skeletal homologies, phylogeny and classification of the earliest asterozoan echinoderms. Journal of Systematic Palaeontology, 3:29114.Google Scholar
Destombes, J., Holland, H., and Willefert, S. 1985. Lower Palaeozoic rocks of Morocco, p. 157184. In Holland, C. H. (ed.), Lower Palaeozoic Rocks of the World. Volume 4. Lower Palaeozoic of North-Western and West Central Africa. John Wiley and Sons, Chichester.Google Scholar
Donovan, S. K. 1986. Pelmatozoan columnals from the Ordovician of the British Isles, Pt. 1, Monograph of the Palaeontographical Society, 568 (part of volume 138):168.Google Scholar
Donovan, S. K. 1989. The improbability of a muscular crinoid column. Lethaia, 22:307315.CrossRefGoogle Scholar
Donovan, S. K. 1990. Functional morphology of synostosial articulations in the crinoid column. Lethaia, 23:291296.CrossRefGoogle Scholar
Donovan, S. K. 1995. Pelmatozoan columnals from the Ordovician of the British Isles, Pt. 3, Monograph of the Palaeontographical Society, 597 (part of volume 149):115193.CrossRefGoogle Scholar
Fatka, O. and Kordule, V. 1990. Vyscystic ubaghsi gen. et sp. nov., imbricate eocrinoid from Czechoslovakia (Echinodermata, Middle Cambrian). Vestnik Ustredniho ustavu geologickeho, 65:315320.Google Scholar
Geyer, G. 1989. Late Precambrian to early Middle Cambrian lithostratigraphy of southern Morocco. Beringeria, 1:115143.Google Scholar
Geyer, G. and Landing, E. 1995. The Cambrian of the Moroccan Atlas regions. Beringeria, Special Issue, 2:746.Google Scholar
Grimmer, J. C., Holland, N. D., and Kubboia, H. 1984a. The fine structure of the stalk of the pentacrinoid larva of a feather star Comanthus japonica (Echinodermata: Crinoidea). Acta Zoologica, 65:4158.CrossRefGoogle Scholar
Grimmer, J. C., Holland, N. D., and Messing, C. G. 1984b. Fine structure of the stalk of the bourgueticrinid sea lily Democrinus conifer (Echinodermata: Crinoidea). Marine Biology, 81:163176.CrossRefGoogle Scholar
Grimmer, J. C., Holland, N. D., and Hayami, I. 1985. Fine structure of the stalk of an isocrinid sea lily (Metacrinus rotundus) (Echinodermata: Crinoidea). Zoomorphology, 105:3950.CrossRefGoogle Scholar
Guensburg, T. E. and Sprinkle, J. 1997. Rhombiferans are not the ancestors of crinoids. Geological Society of America Abstracts with Programs, 29(6):A341.Google Scholar
Guensburg, T. E. and Sprinkle, J. 2000. Ecological radiation of Cambro-Ordovician echinoderms, p. 428444. In Zhuravlev, A. Y. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.CrossRefGoogle Scholar
Guensburg, T. E. and Sprinkle, J. 2001. Earliest crinoids: New evidence for the origin of the dominant Paleozoic echinoderms. Geology, 29:131134.2.0.CO;2>CrossRefGoogle Scholar
Guensburg, T. E. and Sprinkle, J. 2003. The oldest known crinoids (Early Ordovician, Utah) and a new crinoid plate homology system. Bulletins of American Paleontology, 364:143.Google Scholar
Holland, N. D., Grimmer, J. C., and Wiegmann, K. 1991. The structure of the sea lily Calamocrinus diomedae, with special reference to the articulations, skeletal microstructure, symbiotic bacteria, axial organs, and stalk tissues (Crinoida, Millericrinida). Zoomorphology, 110:115132.CrossRefGoogle Scholar
Hyman, L. H. 1955. Echinodermata: The Invertebrates, Volume 4. McGraw-Hill, New York, 763 p.Google Scholar
Jaekel, O. 1901. Über Carpoideen, eine neue Klasse von Pelmatozoen. Zeitschrift der Deutsche Geologisch Gesellschaft, 52:666677.Google Scholar
Jaekel, O. 1904. Über sogenannte Lobolithen. Deutsche Geologisch Gesellschaft Monatsbereichte, 56:5963.Google Scholar
Jell, P. A., Burrett, C. F., and Banks, M. R. 1985. Cambrian and Ordovician echinoderms from eastern Australia. Alcheringa, 9:183208.CrossRefGoogle Scholar
Lefebvre, B. and Fatka, O. 2003. Palaeogeographical and palaeoecological aspects of the Cambro-Ordovician radiation of echinoderms in Gondwanan Africa and peri-Gondwanan Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 195:7397.CrossRefGoogle Scholar
Littlewood, D. T. J., Smith, A. B., Clough, K. A., and Emson, R. H. 1997. The interrelationships of the echinoderm classes: Morphological and molecular evidence. Biological Journal of the Linnean Society, 61:409438.CrossRefGoogle Scholar
Macurda, D. B. and Meyer, D. L. 1975. The microstructure of the crinoid endoskeleton. The University of Kansas Paleontological Contributions, 74:122.Google Scholar
Mooi, R. and David, B. 1997. Skeletal homologies of echinoderms, p. 305335. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. The Paleontological Society Papers, 3.Google Scholar
Moore, R. C., Jeffords, R. M., and Miller, T. H. 1968. Morphological features of crinoid columns. The University of Kansas Paleontological Contributions, Echinodermata, 8:130.Google Scholar
Paul, C. R. C. and Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews, 59:443481.CrossRefGoogle Scholar
Porter, S. M. 2004. Halkieriids in Middle Cambrian phosphatic limestones from Australia. Journal of Paleontology, 78:574590.2.0.CO;2>CrossRefGoogle Scholar
Prokop, R. 1962. Akadocrinus nov. gen., nova lilijice z jineckého kambria (Eocrinoidea). Vestnik Ustredniho ustavu geologického, 27:3139.Google Scholar
Roux, M. 1975. Microstructural analysis of the crinoid stem. The University of Kansas Paleontological Contributions, 75:17.Google Scholar
Sevastopulo, G. D. and Keegan, J. B. 1980. A technique for revealing the stereom microstructure of fossil crinoids. Palaeontology, 23:749756.Google Scholar
Smith, A. B. 1980. Stereom microstructure of the echinoid test. Special Papers in Palaeontology, 25:181.Google Scholar
Smith, A. B. 1984. Classification of the Echinodermata. Palaeontology, 27:431459.Google Scholar
Smith, A. B. 1988. Patterns of diversification and extinction in early Palaeozoic echinoderms. Palaeontology, 31:799828.Google Scholar
Smith, A. B. 1990. Biomineralization in echinoderms, p. 413443. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends. Van Nostrand Reinhold, New York.Google Scholar
Smith, A. B. and Jell, P. A. 1990. Cambrian edrioasteroids from Australia and the origin of starfishes. Memoirs of the Queensland Museum, 28:715778.Google Scholar
Smith, A. B., Peterson, K. J., Wray, G., and Littlewood, D. T. J. 2004. From bilateral symmetry to pentaradiality. The phylogeny of hemichordates and echinoderms, p. 365383. In Cracraft, J. and Donoghue, M. J. (eds.), Assembling the Tree of Life. Oxford University Press, Oxford.CrossRefGoogle Scholar
Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Museum of Comparative Zoology, Harvard University, Special Publication, 283 p.Google Scholar
Sprinkle, J. 1976. Classification and phylogeny of “pelmatozoan” echinoderms. Systematic Zoology, 25:8391.CrossRefGoogle Scholar
Sprinkle, J. 1995. Do eocrinoids belong to the Cambrian or to the Paleozoic evolutionary fauna?, p. 397400. In Cooper, J. D., Droser, M. L., and Finney, S. C. (eds.), Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System. SEPM Pacific Section, Fullerton, California.Google Scholar
Sprinkle, J. and Moore, R. C. 1978. Echmatocrinea, p. T405T407. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Sprinkle, J. and Collins, D. 1998. Revision of Echmatocrinus from the Middle Cambrian Burgess Shale of British Columbia. Lethaia, 31:269282.CrossRefGoogle Scholar
Thoral, M. 1935. Contribution à l'étude paléontologique de l'Ordovicien inférieur de la Montagne Noire et révision sommaire de la faune cambrienne de la Montagne Noire. Thèses Présentées a la Faculté des Sciences de l'Université de Paris, série A, 1541, 363 p.Google Scholar
Ubaghs, G. 1960. Le genre Lingulocystis Thoral (Echinodermata, Eocrinoidea) avec des remarques critiques sur la position systematique du genre Rhipidocystis Jaekel. Annales de Paleontologie, 46:81116.Google Scholar
Ubaghs, G. 1967. Eocrinoidea, p. S455S495. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. S, Echinodermata 1. Geological Society of America and University of Kansas Press, Boulder.Google Scholar
Ubaghs, G. 1978. Skeletal morphology of fossil crinoids, p. T58T216. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2. Geological Society of America and University of Kansas Press, Boulder.Google Scholar
Ubaghs, G. 1998. Echinodermes nouveaux du Cambrien supérieur de la Montagne Noires (France méridionale). Geobios, 31:809829.CrossRefGoogle Scholar
Ulrich, E. O. 1929. Trachelocrinus, a new genus of Upper Cambrian crinoids. Journal of the Washington Academy of Science, 19:6366.Google Scholar
Van Looy, J. 1985. Het kaartblad Tazenakht 1/100.000, Anti-Atlas, Marokko. Kartiering, Lithostratigrafie, Biostratigrafie van Precambrium tot Tremadoc. Unpublished Ph.D. dissertation, Katholic University of Leuven, Leuven, 198 p.Google Scholar
Yakovlev, N. N. 1956. Pervaya Nakhodka morskoy lilii v Kembrii SSSR. Doklady Akademii nauk SSSR, 108:726727.Google Scholar