Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T07:50:10.176Z Has data issue: false hasContentIssue false

Solving the mystery of crinoid ancestry: new fossil evidence of arm origin and development

Published online by Cambridge University Press:  14 July 2015

Thomas E. Guensburg
Affiliation:
Sciences Division, Rock Valley College, 3301 N. Mulford Road, Rockford, IL 61114, Department of Geological Sciences, Jackson School of Geosciences, University of Texas, 1 University Station C1100, Austin, 78712-0254,
James Sprinkle
Affiliation:
Sciences Division, Rock Valley College, 3301 N. Mulford Road, Rockford, IL 61114, Department of Geological Sciences, Jackson School of Geosciences, University of Texas, 1 University Station C1100, Austin, 78712-0254,

Abstract

Apektocrinus ubaghsi new genus and species is a monospecific taxon assigned to the new family Apektocrinidae based on additional preparation of a single previously studied specimen. Apektocrinus is among the oldest known crinoids (Early Tremadoc, Early Ordovician). Although expressing crinoid apomorphies, it is interpreted as retaining plesiomorphies in its arms reflecting early edrioasteroid rather than blastozoan (eocrinoid) ancestry. Apomorphies represent basal crinoid and cladid (crownward) levels of phylogeny.

Restudy fortifies previous reports of the presence of a basal echinoderm plesiomorphy; floor plates above brachials in the arms of Apektocrinus, as well as in other approximately contemporary crinoids. Apektocrinus furnishes the first record of podial basins in crinoid arms. Arms and calyx of Apektocrinus merge gradually, facilitated by continuations of interbrachials (extraxial body plates) extending onto the arms and separating floor plates from brachials. These arm interbrachials, which diminish and pinch out distally as floor plates nestle into the brachial (adoral) groove, have not been recognized as such in crinoids.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W. I. 1996. Crinoid plate circlet homologies. Journal of Paleontology, 70:955964.CrossRefGoogle Scholar
Ausich, W. I. 1998. Origin of the Crinoidea, p. 127132. In Mooi, R. and Telford, M. (eds.), Echinoderms, San Francisco A. A. Balkema, Rotterdam.Google Scholar
Bates, D. E. B. 1968. On Dendrocrinus cambriensis Hicks, the earliest known crinoid. Palaeontology, 11:406409.Google Scholar
Bather, F. A. 1899. A phylogenetic classification of the Pelmatozoa. British Association for the Advancement of Science, Report for 1898, section D, p. 916923.Google Scholar
Bell, B. M. 1976. A study of North American Edrioasteroidea. New York State Museum Memoir 21, 447 p.Google Scholar
Bell, B. M. and Sprinkle, J. 1978. Totiglobus, an unusual new edrioasteroid from the Middle Cambrian of Nevada. Journal of Paleontology, 52:243266.Google Scholar
Billings, E. 1857. New species of fossils from Silurian rocks of Canada, p. 245345. Geological Survey of Canada report for the years 1853-56.Google Scholar
Brower, J. C. and Veinus, J. 1982. Long-armed cladid inadunates, p. 129144. In Sprinkle, J. (ed.), Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions, Monograph 1.Google Scholar
Clausen, S. and Smith, A. B. 2008. Stem structure and evolution in the earliest pelmatozoans. Journal of Paleontology, 82:737748.CrossRefGoogle Scholar
Donovan, S. K. and Cope, J. P. C. 1989. A new camerate crinoid from the Arenig of south Wales. Palaeontology, 32:101107.Google Scholar
Foerste, A. F. 1925. Upper Ordovician Faunas of Ontario and Quebec. Canada Department of Mines, Geological Survey, Memoir 138 (1924), geological series 121, 255 pp.Google Scholar
Guensburg, T. E. 1992. Paleoecology of hardground encrusting and commensal crinoids, Middle Ordovician, Tennessee. Journal of Paleontology, 66:129147.CrossRefGoogle Scholar
Guensburg, T. E. and Sprinkle, J. 1994. Revised phylogeny and functional interpretation of the Edrioasteroidea based on new taxa from the Early and Middle Ordovician of Western Utah. Fieldiana, Geology, new series, number 29, 41 p.CrossRefGoogle Scholar
Guensburg, T. E. and Sprinkle, J. 2001. Earliest crinoids: New evidence for the origin of the dominant Paleozoic crinoids. Geology, 29:131134.2.0.CO;2>CrossRefGoogle Scholar
Guensburg, T. E. and Sprinkle, J. 2003. The oldest known crinoids (Early Ordovician, Utah) and a new crinoid plate homology system. Bulletins of American Paleontology, number 364, 43 p.Google Scholar
Guensburg, T. E. and Sprinkle, J. 2007. Phylogenetic implications of the Protocrinoidea: Blastozoans are not ancestral to crinoids. Annales de Paleontologie, 93:277290.CrossRefGoogle Scholar
Hintze, L. F. 1973. Lower and Middle Ordovician Stratigraphic sections in the Ibex area, Millard County, Utah. Brigham Young University Geology Studies, 20:336.Google Scholar
Jaekel, O. 1902. Uber verschiedene Wege phylogenetischer Entwicklung, p. 10581117. Fifth International Geological Congress, Berlin, 1901, Verhandlungen.CrossRefGoogle Scholar
Landing, E. 1981. Conodont biostratigraphy and thermal color alteration indices of the upper St. Charles and lower Garden City Formation, Bear River Range, northern Utah and southeastern Idaho. U.S. Geological Survey Open-File Report 81-740, 22 p.CrossRefGoogle Scholar
Lane, N. G. 1970. Lower and middle Ordovician crinoids from west-central Utah. Brigham Young University Geology Studies, 17:318.Google Scholar
Mooi, R. 2000. Not all written in stone: Interdisciplinary synthesis in echinoderm paleontology. Canadian Journal of Zoology, 79:12091231.CrossRefGoogle Scholar
Mooi, R., David, B., and Marchand, D. 1994. Echinoderm skeletal homologies: classical morphology meets modern phylogenetics, 87-95. In David, B., Guille, A., Feral, J.-P., and Roux, M. (eds.), Echinoderms Through Time. A. A. Balkema, Rotterdam.Google Scholar
Mooi, R. and David, B. 1997. Skeletal homologies of echinoderms. Paleontological Society Papers, 3:305335.CrossRefGoogle Scholar
Mooi, R., David, B., and Wray, G. 2005. Arrays in rays: terminal addition in echinoderms and its correlation with gene expression. Evolution and Development, 7:543555.CrossRefGoogle ScholarPubMed
Moore, R. C. and Laudon, L. R. 1943. Evolution and Classification of Paleozoic Crinoids. Geological Society of America, Special Paper 46, 153 p.CrossRefGoogle Scholar
Moore, R. C., Rassmussen, H. W., Lane, N. G., Ubaghs, G., Strimple, H. L., Peck, R. E., Sprinkle, J., Fay, R. O., and Sievers-Doreck, H. 1978. Systematic Descriptions, Crinoidea, T403-T812. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata, 2, Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Pander, C. H. 1856. Monographie der fossilen Fische des silurischen Systems der russisch-baltischen Gouvernements. Akademie das Wissenschaft, St. Petersburg, 91 p.Google Scholar
Parsley, R. L. 1982. Eumorphocystis, p. 280288. In Sprinkle, J. (ed.), Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions, Monograph 1.Google Scholar
Paul, C. R. C. and Smith, A. B. 1984. The early radiation and phylogeny of the Echinodermata. Biology Review, 59:443481.CrossRefGoogle Scholar
Ross, R. J. Jr. 1949. Stratigraphy and trilobite faunal zones of the Garden City Formation, Northestern Utah. American Journal of Science, 247:472491.CrossRefGoogle Scholar
Ross, R. J. Jr., Hintze, L. H., Ethington, R. L., Miller, J. F., Taylor, M. E., and Repetski, J. E. 1997. The Ibexian, Lowermost Series in the North American Ordovician. United States Geological Survey Professional Paper 1579, 50 p.Google Scholar
Rozhnov, S. V. 1988. Morphology and taxonomic position of lower Ordovician crinoids. Paleontological Journal, no. 2, p. 6782.Google Scholar
Rozhnov, S. V. 2002. Morphogenesis and evolution of crinoids and other pelmatozoan echinoderms in the Early Paleozoic. Paleontological Journal, supplementary issue 6, p. S525S674.Google Scholar
Rozhnov, S. V. 2007. New data on perittocrinids and hybocrinids (Crinoidea, Echinodermata) from the Middle Ordovician of the Baltic Region. Annales de Paleontologie, 93:261276.CrossRefGoogle Scholar
Simms, M. J. 1994. Reinterpretation of thecal plate homology and phylogeny in the class Crinoidea. Lethaia, 26:303312.CrossRefGoogle Scholar
Smith, A. B. and Jell, P. A. 1990. Cambrian edrioasteroids from Australia and the origin of starfishes. Memoirs of the Queensland Museum, 28:715778.Google Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Harvard University Museum of Comparative Zoology, Special Publication, 283 p.Google Scholar
Sprinkle, J. 1982. Large calyx cladid inadunates, p. 145169. In Sprinkle, J. (ed.), Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions, Monograph 1.Google Scholar
Sprinkle, J. 1989. Origin of the echinoderm Class Rhombifera based on new Early Ordovician discoveries from the Rocky Mountains. Geological Society of America Abstracts with Programs, 21(6):A114.Google Scholar
Sprinkle, J. and Collins, D. 1998. Revision of Echmatocrinus from the Middle Cambrian Burgess Shale of British Columbia. Lethaia 31:269282.CrossRefGoogle Scholar
Sprinkle, J., Guensburg, T. E., and Gahn, F. J. 2008. Overview of Early Ordovician crinoid diversity from the western and southwestern United States, p. 313327. In Ausich, W. I. and Webster, G. D. (eds.), Echinoderm Paleobiology. Indiana University Press, Bloomington.Google Scholar
Springer, F. 1911. On a Trenton echinoderm fauna at Kirkfield, Ontario. Canadian Geological Survey Memoir 15-P, 50 p.CrossRefGoogle Scholar
Strimple, H. L. and McGinnis, M. R. 1972. A new camerate crinoid from the Al Rose Formation, Lower Ordovician, of California. Journal of Paleontology, 46:7274.Google Scholar
Sumrall, C. D. and Sprinkle, J. 2008. A new homology model of edrioasteroid ambulacra and its phylogenetic implications fort the origin of asteroid ambulacra. Geological Society of America, Abstracts with Programs, 40(6):203.Google Scholar
Ubaghs, G. 1968. Eocrinoidea, S455-S495. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. S, Echinodermata 1(2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ubaghs, G. 1969. Aethocrinus moorei Ubaghs, n. gen., n. sp., le plus ancient crinoide dicyclique connu. University of Kansas Paleontological Contributions, Paper 38, 25 p.Google Scholar
Ubaghs, G. 1975. Early Paleozoic echinoderms. Annual Review of Earth and Planetary Sciences, 3:7998.CrossRefGoogle Scholar
Ubaghs, G. 1978. Skeletal morphology of fossil crinoids, T58-T216. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(1). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ulrich, E. O. 1925. New classification of the “Heterocrinidae”. In Foerste, A. F. (ed.), Upper Ordovician Faunas of Ontario and Quebec. Geological Survey of Canada, Memoir 138, p. 82104.Google Scholar
Wachsmuth, C. and Springer, F. 1881. Revision of the Paleocrinoidea, Pt. 2, Family Sphaeroidocrinidae, with the sub-families Platycrinitidae, Rhodocrinidae, and Actinocrinidae, p. 175411. Academy of Natural Sciences of Philadelphia, Proceedings.Google Scholar
Webby, B. D., Cooper, R. A., Bergstrom, S. M., and Paris, F. 2004. Stratigraphic framework and time slices, p. 4147. In Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G. (eds.), The Great Ordovician Biodiversification Event. Columbia University Press, New York.CrossRefGoogle Scholar