Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T12:40:16.808Z Has data issue: false hasContentIssue false

Shell shape plasticity in Late Pennsylvanian myalinids (Bivalvia)

Published online by Cambridge University Press:  14 July 2015

David R. Hickey*
Affiliation:
Department of Geological Sciences, Michigan State University, East Lansing 48824–1115

Abstract

Analyses of shell shape variation in epifaunal and semi-infaunal myalinids from the LaSalle “cyclothem” attest to the extensive shape plasticity of some Late Pennsylvanian myalinids. Mean shell shapes differ significantly within and among species across three nearshore facies. Discriminant analyses of Fourier biometric data categorized by taxonomic, populational (habitat), life-mode, and “multi-species habitat assemblage”” discriminant groups reveal patterns of shape change and variation across an inferred environmental stress gradient in addition to taxonomic and life-mode shape differences. Fourier harmonic data are good indicators of shape differences between epifaunal and semi-infaunal life modes. Mean shapes of epifaunal species vary among habitats. Within-habitat shell shape convergence occurred between Myalina glossoidea and M. (Orthomyalina) slocomi. Interpopulational shape divergence occurred among all populations of M. (Orthomyalina) slocomi, M. glossoidea, and M. wyomingensis. Within-species variation among habitats produced significant mean shape differences among each of three “multi-species habitat assemblages.” Results indicate that a portion of the variation is of ecophenotypic origin.

Mean interspecific shape differences reflect internal functional organization and life modes. Intraspecific shape differences among epifaunal species could reflect physical and biotic habitat variables. Several harmonic amplitudes vary in concert with inferred environmental variation among habitats. Although biologic interpretation of harmonic data is problematic, parallel trends in fifth harmonic amplitudes of epifaunal species mirror inferred differences in water turbulence among habitats and could reflect shape variation related to byssal attachment.

Stress gradient trends in intraspecific shape variability cannot be collectively explained by either of the antithetical stability-diversity-variation hypotheses. Each species exhibits a different nonmonotonic trend. Maximal levels of intraspecific variation within each species occurred within different habitats. Within-species differences in levels of variation could result from genetic variation among populations as well as ecophenotypic influences. Comparative studies of ontogenetic shape change between valves of individuals, among individuals, and among populations are necessary to determine the relative influence of environmental variables on shape variation and evolutionary significance of phenotypic plasticity.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberch, P. 1980. Ontogenesis and morphological diversification. American Zoologist, 20:653667.CrossRefGoogle Scholar
Alberch, P. 1982. Developmental constraints in evolutionary processes, p. 313332. In Bonner, J. T. (ed.), Evolution and Development. Dahlem Konferenzen, Springer-Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
Alexander, R. R. 1974. Morphologic adaptations of the bivalve Anadara from the Pliocene of the Kettleman Hills, California. Journal of Paleontology, 48:633651.Google Scholar
Alexander, R. R. 1975. Phenotypic lability of the brachiopod Rafinesquina alternata (Ordovician) and its correlation with the sedimentologic regime. Journal of Paleontology, 49:607618Google Scholar
Anstey, R. L. and Delmet, D. A. 1973. Fourier analysis of zooecial chamber shapes in fossil bryozoans. Geological Society of America Bulletin, 84:17531764.2.0.CO;2>CrossRefGoogle Scholar
Anstey, R. L. and Pachut, J. F. 1980. Fourier packing ordinate: a univariate size-independent measurement of the polygonal packing variation in Paleozoic bryozoans. Mathematical Geology, 12:139156.CrossRefGoogle Scholar
Ashton, J. H. and Rowell, A. J. 1975. Environmental stability and species proliferation in Late Cambrian trilobite faunas: a test of the niche-variation hypothesis. Paleobiology, 1:161174.CrossRefGoogle Scholar
Ayala, F. J., Valentine, J. W., DeLaca, T. E. and Zumwalt, G. S. 1975a. Genetic variability of the Antarctic brachiopod Liothyrella notorcadensis and its bearing on the mass extinction hypothesis. Journal of Paleontology, 49:19.Google Scholar
Ayala, F. J., Valentine, J. W., Hedgecock, D. and Barr, G. 1975b. Deep sea asteroids—high genetic variability in a stable environment. Evolution, 29:203212.CrossRefGoogle Scholar
Bookstein, F. L., Gingerich, P. D. and Kluge, A. G. 1978. Hierarchical linear modeling of the tempo and mode of evolution. Paleobiology, 4:120134.CrossRefGoogle Scholar
Bookstein, F. L., Strauss, R. E., Humphries, J. M., Chernoff, B., Elder, R. L. and Smith, G. R. 1982. A comment upon the use of Fourier methods in systematics. Systematic Zoology, 31:8591.CrossRefGoogle Scholar
Bradshaw, A. D. 1965. Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13:115155.CrossRefGoogle Scholar
Brande, S. 1977. Patterns of morphologic variability are measurement dependent: morphological variability in the mactrid bivalve, Mulina lateralis. Geological Society of America Abstracts with Program, 9(7):909.Google Scholar
Bretsky, P. W. 1985. Morphological variation in the Middle Devonian bivalve mollusk Eodon bellastriatus (Conrad). Geological Society of America Abstracts with Program, 17(7):531Google Scholar
Bretsky, P. W. and Lorenz, D. M. 1970. Adaptive response to environmental stability: a unifying concept in paleoecology. North American Paleontological Convention, Chicago, 1969, Proceedings, E: 522–550.Google Scholar
Christopher, R. A. and Waters, J. A. 1974. Fourier series as a quantitative descriptor of miospore shape. Journal of Paleontology, 48:697709.Google Scholar
Cuffey, R. J. 1967. Bryozoan Tabulipora carbonaria in Wreford Megacyclothem (Lower Permian) of Kansas. University of Kansas Paleontological Contributions, article 43:196.Google Scholar
Delmet, D. A. and Anstey, R. L. 1974. Fourier analysis of morphological plasticity within an Ordovician bryozoan colony. Journal of Paleontology, 48:217226.Google Scholar
Doyle, R. W. 1971. Genetic differentiation of ophiuroid populations on the lower continental slope. Ecological Society of America Bulletin, 52:45.Google Scholar
Doyle, R. W. 1972. Genetic differentiation in Ophiomusium lymani (Echinodermata) populations in the deep sea. Deep-Sea Research, 19:199208.Google Scholar
Ehrlich, R., Pharr, R. B. Jr. and Healy-Williams, N. 1983. Comments on the validity of Fourier descriptors in systematics: a reply to Bookstein et al. Systematic Zoology, 32:202206.CrossRefGoogle Scholar
Ehrlich, R., Pharr, R. B. Jr. and Weinberg, B. 1970. An exact method for the characterization of grain shape. Journal of Sedimentary Petrology, 40:205212.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism, p. 82115. In Schopf, T. J. M. (ed.), Models in Paleobiology. Freeman, Cooper, and Co., San Francisco.Google Scholar
Emery, K. O., Stevenson, R. E. and Hedgpeth, J. W. 1957. Estuaries and lagoons, p. 673750. In Hedgpeth, J. W. (ed.), Treatise on Marine Ecology and Paleoecology, Volume 1, Ecology. Geological Society of America Memoir 67.Google Scholar
Ferson, S., Rohlf, F. J. and Koehn, R. K. 1985. Measuring shape variation of two dimensional outlines. Systematic Zoology, 34:5968.CrossRefGoogle Scholar
Foster, A. B. 1985. Contrasting evolutionary patterns in two reef corals and their possible relationship to life history traits. Geological Society of America Abstracts with Program, 17(7):585.Google Scholar
Gevirtz, J. L. 1976. Fourier analysis of bivalve outlines: implications on evolution and autecology. Journal of the International Association of Mathematical Geology, 8:151163.CrossRefGoogle Scholar
Gooch, J. L. and Schopf, T. J. M. 1973. Genetic variability in the deep sea: relation to environmental variability. Evolution, 26:545552.CrossRefGoogle Scholar
Green, J. 1969. The Biology of Estuarine Animals. University of Washington Press, Seattle, 401 p.Google Scholar
Green, P. E. 1978. Analyzing Multivariate Data. The Dryden Press, Hinsdale, Illinois, 519 p.Google Scholar
Grinnel, R. S. Jr. and Andrews, G. W. 1964. Morphologic studies of the brachiopod genus Composita. Journal of Paleontology, 38:227248.Google Scholar
Hickey, D. R. and Younker, J. L. 1981. Structure and composition of a Pennsylvanian benthic community. Journal of Paleontology, 55:112.Google Scholar
Hoffman, A. 1981. Biological controls of the punctuated versus gradual mode of species evolution. International Symposium on Concepts and Methods in Paleontology, Barcelona, 1981, p. 5763.Google Scholar
Hoffman, A. 1982. Punctuated versus gradual mode of evolution, a reconsideration. Evolutionary Biology, 15:411436.CrossRefGoogle Scholar
Jablonski, D. 1982. Evolutionary rates and modes in Late Cretaceous gastropods: role of larvae ecology. Third North American Paleontological Convention, 1982, Proceedings, 1:257262.Google Scholar
Jackson, J. B. C. 1974. Biogeographical consequences of eurytopy and stenotopy among marine bivalves and their evolutionary significance. American Naturalist, 108:541560.CrossRefGoogle Scholar
Johnson, A. L. A. 1981. Detection of ecophenotypic variation in fossils and its application to a Jurassic scallop. Lethaia, 14:277285.CrossRefGoogle Scholar
Kelley, P. H. 1983a. Evolutionary patterns of eight Chesapeake group molluscs: evidence for the model of punctuated equilibria. Journal of Paleontology, 57:581598.Google Scholar
Kelley, P. H. 1983b. The role of within-species differentiation in macroevolution of Chesapeake group bivalves. Paleobiology, 9:261268.CrossRefGoogle Scholar
Koehn, R. K., Milkman, R. and Mitton, J. B. 1976. Population genetics of marine pelecypods. IV. Selection, migration and genetic differentiation in the blue mussel Mytilus edulis. Evolution, 30:223.CrossRefGoogle ScholarPubMed
Kuenen, D. J. 1942. On the distribution of mussels on the intertidal sand flats near Den Helder. Archives Néerlandaises de Zoologie, 6:8157.CrossRefGoogle Scholar
Levinton, J. S. 1973. Genetic variation in a gradient of environmental variability: marine Bivalvia (Mollusca). Science, 180:7576.CrossRefGoogle Scholar
Levinton, J. S. and Koehn, R. K. 1976. Population genetics of mussels, p. 357384. In Bayne, B. L. (ed.), Marine Mussels: Their Ecology and Physiology. Cambridge University Press, Cambridge, England, 506 p.Google Scholar
Levinton, J. S. and Simon, C. M. 1980. A critique of the punctuated equilibrium model and implications for the detection of speciation in the fossil record. Systematic Zoology, 29:130142.CrossRefGoogle Scholar
Maderson, P. F. A. et al. 1982. The role of development in macroevolutionary change, p. 279312. In Bonner, J. T. (ed.), Evolution and Development. Dahlem Konferenzen, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
Merrill, G. K. and Martin, M. D. 1977. Environmental control of conodont distribution in the Bond and Mattoon Formations (Pennsylvanian, Missourian), northern Illinois. Geological Society of Canada Special Paper 15:243271.Google Scholar
Newell, N. D. 1942. Late Paleozoic pelecypods: Mytilacea. State Geological Survey of Kansas, 10(2):1123.Google Scholar
Newell, N. D. 1965. Classification of the Bivalvia. American Museum Novitates, 2206:125.Google Scholar
Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K. and Bent, D. H. 1975. SPSS: Statistical Package for the Social Sciences. McGraw-Hill Book Co., New York, 675 p.Google Scholar
Nolde, J. E. 1982. Application of multivariate statistics to a facies study of the LaSalle cyclothem. Unpubl. M.S. thesis, University of Illinois at Chicago, 106 p.Google Scholar
Pachut, J. F. 1982. Morphologic variation within and among genotypes of two Devonian bryozoan species: an independent indicator of paleostability? Journal of Paleontology, 56:703716.Google Scholar
Pachut, J. F. and Anstey, R. L. 1979. A developmental explanation of stability-diversity-variation hypotheses: morphogenetic regulation in Ordovician bryozoan colonies. Paleobiology, 5:168187.CrossRefGoogle Scholar
Rachootin, S. P. and Tompson, K. S. 1981. Epigenetics, paleontology, and evolution, p. 181193. In Scudder, G. G. E. and Revel, J. L. (eds.), Evolution Today. Proceedings of the Second International Congress of Systematic and Evolutionary Biology.Google Scholar
Rogers, M. J. 1982. A description of the generating curve of bivalves with straight hinges. Palaeontology, 25:109117.Google Scholar
Schopf, T. J. M. and Gooch, J. L. 1971. A natural experiment using deep-sea invertebrates to test the hypothesis that genetic homozygosity is proportional to environmental stability. Biological Bulletin, 141:401.Google Scholar
Schwarcz, H. P. and Shane, K. C. 1969. Measurement of particle shape by Fourier analysis. Sedimentology, 13:213231.CrossRefGoogle Scholar
Seed, R. 1968. Factors influencing shell shape in the mussel Mytilus edulis. Journal of the Marine Biological Association of the United Kingdom, 48:561584.CrossRefGoogle Scholar
Seed, R. 1974. Morphological variation in Mytilus from the French coast in relation to the occurrence and distribution of the sea mussel Mytilus galloprovincialis Lamark. Cahiers de Biologie Marine, 13:257384Google Scholar
Seed, R. 1976. Ecology, p. 1365. In Bayne, B. L. (ed.), Marine Mussels: Their Ecology and Physiology. Cambridge University Press, Cambridge, England.Google Scholar
Simpson, G. G. 1937. Pattern of phyletic evolution. Geological Society of America Bulletin, 48:303314.CrossRefGoogle Scholar
Spencer, R. S. 1978. Paleoecologic response and cyclothemic phase of Chonetinella flemingi and C. alata from the Pennsylvanian of Kansas. Journal of Paleontology, 52:13561374.Google Scholar
Stanley, S. M. 1970. Shell Form and Life Habits of the Bivalvia (Mollusca). Geological Society of America Memoir, 125:1296.CrossRefGoogle Scholar
Stanley, S. M. 1972. Functional morphology and evolution of byssally attached bivalve mollusks. Journal of Paleontology, 46:165248.Google Scholar
Stearns, S. C. 1982. The role of development in the evolution of life history traits, p. 237258. In Bonner, J. T. (ed.), Evolution and Development. Dahlem Konferenzen, Springer-Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
Theisen, B. F. 1978. Allozyme clines and evidence of strong selection in three loci in Mytilus edulis L. (Bivalvia) from Danish waters. Ophelia, 17:135142.Google Scholar
Valentine, J. W. 1971. Resource supply and species diversity patterns. Lethaia, 4:5161.CrossRefGoogle Scholar
Valentine, J. W. and Ayala, F. J. 1974. Genetic variation in Frieleia halli, a deep sea brachiopod. Deep-Sea Research, 22:3744.Google Scholar
Van Valen, L. 1965. Morphological variation and the width of the ecological niche. American Naturalist, 99:377390.CrossRefGoogle Scholar
Vernberg, W. B. and Vernberg, F. J. 1972. Environmental Physiology of Marine Animals. Springer-Verlag, New York, 346 p.CrossRefGoogle Scholar
Waddington, C. H. 1975. Evolution of an Evolutionist. Cornell University Press, Ithaca, New York, 328 p.Google Scholar
Warme, J. E. 1971. Paleoecological aspects of a modern coastal lagoon. University of California Publications in Geological Sciences, 87:1112.Google Scholar
Waters, J. A. 1977. Quantification of shape by use of Fourier analysis: the Mississippian blastoid genus Pentremites. Paleobiology, 3:288299.CrossRefGoogle Scholar
White, K. M. 1937. Mytilus. Liverpool Marine Biology Committee, Memoir 21, 117 p.Google Scholar
Williamson, P. G. 1981. Paleontological documentation of speciation in Cenozoic molluscs from Turkana Basin. Nature, 293:437443.CrossRefGoogle Scholar
Willman, H. B. 1975. Handbook of Illinois Stratigraphy. Illinois Geological Survey Bulletin 66, 388 p.Google Scholar
Wright, A. D. 1972. The relevance of zoological variation studies to the generic identification of fossil brachiopods. Lethaia, 5:115.CrossRefGoogle Scholar
Younker, J. L. and Ehrlich, R. 1977. Fourier biometrics: harmonic amplitudes as multivariate shape descriptors. Systematic Zoology, 26:336342.CrossRefGoogle Scholar