Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T04:20:38.330Z Has data issue: false hasContentIssue false

Shell microstructure of the Late Carboniferous rostroconch mollusc Apotocardium lanterna (Branson, 1965)

Published online by Cambridge University Press:  14 July 2015

Nicole S. Rogalla
Affiliation:
Institute of Geology and Paleontology, Philipps University Marburg, Hans-Meerwein-Strasse, D-35032, Marburg, Germany
Joseph G. Carter
Affiliation:
Department of Geological Sciences, University of North Carolina at Chapel Hill, 27599-3315
John Pojeta Jr.
Affiliation:
U.S. Geological Survey, National Museum of Natural History, MRC 137, Smithsonian Institution, Washington, D.C. 20013-7012

Abstract

The Late Carboniferous bransoniid conocardioidean Apotocardium lanterna (Branson, 1965) had an entirely aragonitic shell with a finely prismatic outer shell layer, a predominantly crossed lamellar to complex crossed lamellar middle shell layer, and an “inner” shell layer of finely textured porcelaneous and/or matted structure. This “inner” layer is probably homologous with the inner part of the middle shell layer and the inner layer sensu stricto of bivalved molluscs. Shell morphological and microstructural convergences between conocardioids and living heart cockles suggest that at least some conocardioids may have farmed algal endosymbionts in their posterior mantle margins. This symbiosis may have helped conocardioids compete with the biomechanically more efficient bivalves during the latter part of the Paleozoic.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amler, M. R. W. 1996. Giant hippocardiids (Mollusca: Rostroconchia) from the Lower Carboniferous of western Europe. Irish Journal of Earth Sciences, 15:113122.Google Scholar
Babin, C. 1966. Mollusques bivalves et céphalopods du Paléozoique armoricain. Étude systematique. Essai sur la phylogénie des Bivalves. Esquisse paléoécologique: Imprimerie Commerciale et Administrative, Brest, 470 p.Google Scholar
Barrande, J. 1881. Systême Silurien du Centre de la Bohême, Volume 6, Acéphalés. Paris and Prague, 342 p.Google Scholar
Barrois, C. 1891. Mémoire sur le faune du grès armoricain. Annales de la Société Géologique du Nord, 19:134237.Google Scholar
Bøggild, O. B. 1930. The shell structure of the mollusks: Det Kongelige Danske Videnskabernes Selskabs Skrifter. Naturvidenskabelig og Mathematisk Afdeling, ser. 9, 2:231326.Google Scholar
Branson, C. C. 1965. New species of Conocardium . Oklahoma Geology Notes, 25(9):247251.Google Scholar
Carter, J. G. 1990. Evolutionary significance of shell microstructure in the Palaeotaxodonta, Pteriomorphia and Isofilibranchia, p. 135296. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends, Volume I. Van Nostrand Reinhold, New York.Google Scholar
Carter, J. G. 2001. Shell ligament and microstructure of selected Silurian and Recent palaeotaxodonts (Mollusca: Bivalvia). American Malacological Bulletin, 16:217238.Google Scholar
Carter, J. G., and Ambrose, W. W. 1989. Techniques for studying molluscan shell microstructure: Chapter 10, p. 101119. In Feldman, R. M., Chapman, R. E., and Hannibal, J. T. (ed.), Paleotechniques. The Paleontological Society, Special Publication 4, 358 p.Google Scholar
Carter, J. G., and Clark, G. R. II. 1985. Classification and phylogenetic significance of molluscan shell microstructure, p. 5071. In Broadhead, T. W. (ed.), Mollusks, Notes for a Short Course, organized by Bottjer, D. J., Hickman, C. S., and Ward, P. D. University of Tennessee, Department of Geological Sciences, Studies in Geology, 13.Google Scholar
Carter, J. G., and Schneider, J. A. 1997. Condensing lenses and shell microstructure in Corculum (Mollusca: Bivalvia). Journal of Paleontology, 71:5661.CrossRefGoogle Scholar
Carter, J. G., and Tevesz, M. J. S. 1978a. Shell microstructure of a Middle Devonian (Hamilton Group) bivalve fauna from central New York. Journal of Paleontology, 52:859880.Google Scholar
Carter, J. G., and Tevesz, M. J. S. 1978b. The shell structure of Ptychodesma (Cyrtodontidae; Bivalvia) and its bearing on the evolution of the Pteriomorphia. Philosophical Transactions of the Royal Society of London, series B, 284:367374.Google Scholar
Carter, J. G., Campbell, D. C., and Campbell, M. R. 2000. Cladistic perspectives on early bivalve evolution, p. 4779. In Harper, E. M., Taylor, J. D., and Crame, J. A. (eds.), The Evolutionary Biology of the Bivalvia. Geological Society, London, Special Publications, 177.Google Scholar
Carter, J. G., Bandel, K., De Buffrénil, V., Carlson, S. J., Castanet, J., Crenshaw, M. A., Dalingwater, J. E., Francillon-Vieillot, H., Géraudie, J., Meunier, F. J., Mutvei, H., De Ricqlès, A., Sire, Y., Smith, A. B., Wendt, J., Williams, A., and Zylberberg, L. 1990. Glossary of Skeletal Biomineralization, p. 609671. In Carter, J. G. (ed.), Skeletal Biomineralization, Patterns, Processes and Evolutionary Trends, Volume 1. Van Nostrand Reinhold, New York.Google Scholar
Cobbold, E. S. 1935. Lower Cambrian faunas from Hérault, France. Annals and Magazine of Natural History, series 10, 16(91):2548.CrossRefGoogle Scholar
Conrad, T. A. 1840. Third annual report on the paleontological department of the Survey [of New York]. New York Geological Survey Annual Report, 4:199207.Google Scholar
Douvillé, H. 1913. Classification des Lamellibranches. Bulletin de la Société Géologique de France, ser. 4, 12:419467.Google Scholar
Dzik, J. 1994. Evolution of ‘small shelly fossils’ assemblages. Acta Palaeontologica Polonica, 39:247313.Google Scholar
Grabau, A. W. 1900. Paleontology of the Cambrian terranes of the Boston Basin. Boston Society of Natural History Occasional Papers, 4:601694, 8 pls.Google Scholar
Hoare, R. D., and Mapes, R. H. 1990. Arceodomus prolata n. sp. (Mollusca, Rostroconchia) from the Pennsylvanian of Texas. Journal of Paleontology, 64:491492.CrossRefGoogle Scholar
Hoare, R. D., Mapes, R. H., and Brown, C. J. 1982. Some Mississippian and Pennsylvanian rostroconchs from the midcontinent region. Journal of Paleontology, 56:123131.Google Scholar
Hoare, R. D., Mapes, R. H., and Yancey, T. E. 2002. Structure, taxonomy, and epifauna of Pennsylvanian rostroconchs (Mollusca). Journal of Paleontology, 76, Suppl. to no. 5, 30 p.CrossRefGoogle Scholar
Hoare, R. D., Steinker, P. J., and Mapes, R. H. 1988. New Carboniferous species of Hippocardia (Rostroconchia, Mollusca) from the midcontinent, USA. Journal of Paleontology, 62:865868.CrossRefGoogle Scholar
Kawaguti, S. 1950. Observations on the heart shell, Corculum cardissa (L.) and its associated zooxanthellae. Pacific Science, 4:4349.Google Scholar
Kerber, M. 1988. Mikrofossilien aus Unterkambrischen Gesteinen der Montagne Noire, Frankreich. Palaeontographica, Beiträge zur Naturgeschichte der Vorzeit, Abt. A, 202:127203.Google Scholar
Kobayashi, T. 1933. Faunal study of the Wanwanian (basal Ordovician) series with special notes on the Ribeiridae and the ellesmereoceroids. Tokyo Imperial University Faculty of Science Journal, sect. 2, 3(7):249328.Google Scholar
Kouchinsky, A. V. 1999. Shell microstructures of the Early Cambrian Anabarella and Watsonella as new evidence on the origin of the Rostroconchia. Lethaia, 32:173180.CrossRefGoogle Scholar
Kouchinsky, A. V. 2000. Shell microstructure of Early Cambrian molluscs. Acta Palaeontologica Polonica, 45(2):119150.Google Scholar
Landing, E. 1989. Paleoecology and distribution of the Early Cambrian rostroconch Watsonella crossbyi Grabau. Journal of Paleontology, 63(5):566573.CrossRefGoogle Scholar
Linnaeus, C. 1758. Systema Naturae, editio 10, regnum animale 1. Stockholm, 824 p.Google Scholar
MacKinnon, D. I. 1985. New Zealand late Middle Cambrian molluscs and the origin of Rostroconchia and Bivalvia. Alcheringa, 9:6581.CrossRefGoogle Scholar
Morgan, G. D. 1924. Geology of the Stonewall Quadrangle, Oklahoma. Oklahoma Bureau of Geology Bulletin 2, 248 p.Google Scholar
Morris, N. J. 1979. On the origin of the Bivalvia, p. 381413. In House, M. R. (ed.), The Origin of Major Invertebrate Groups. Systematics Association Special Volume 12, Academic Press, London and New York, 515 p.Google Scholar
Mutvei, H. 1970. Ultrastructure of the mineral and organic components of molluscan nacreous layer. Biomineralization Research Reports, 2:4861.Google Scholar
Neumayr, M. 1891. Beiträge zu einer morphologischen Eintheilung der Bivalven. Akademie der Wissenschaften, Wien, Sitzungsberichte, Denkschrift der Mathematisch Naturwissenschaftliche Klasse, 58:708801. [Foreword by Suess, E., p. 701–705]Google Scholar
Pannella, G., and MacClintock, C. 1968. Biological and Environmental rhythms reflected in molluscan shell growth. Journal of Paleontology, v. 42, supplement to no. 5, part II of II, Memoir, 2:6480.CrossRefGoogle Scholar
Perner, J. 1903. Gastéropodes, Volume 1. In Barrande, J. (ed.), Systême Silurien du Centre de la Bohême. Prague. [See plate 49 and explanation, by Schubert, R. J. and Waagen, L.]Google Scholar
Pojeta, J. Jr. 1987. Class Rostroconchia, p. 358380. In Boardman, R. S., Cheetham, A. H., and Rowell, A. J. (eds.), Fossil Invertebrates. Blackwell Scientific Publications, Oxford, U.K.Google Scholar
Pojeta, J. Jr., and Runnegar, B. 1976. The Paleontology of Rostroconch Mollusks and the Early History of the Phylum Mollusca. U.S. Geological Survey, Professional Paper 968, 88 p.Google Scholar
Pojeta, J. Jr., and Runnegar, B. 1985. The early evolution of diasome molluscs, p. 295336. In Trueman, E. R. and Clarke, M. R. (eds.), The Mollusca, volume 10, Evolution. Academic Press, Inc., Orlando.Google Scholar
Pojeta, J. Jr., Runnegar, B., Morris, N. J., and Newell, N. D. 1972. Rostroconchia: a new class of bivalved mollusks. Science, 177:264267.CrossRefGoogle ScholarPubMed
Runnegar, B. 1978. Origin and evolution of the Class Rostroconchia. Philosophical Transactions of the Royal Society of London, B, 284:319333.Google Scholar
Runnegar, B. 1983. Molluscan phylogeny revisited. Memoirs of the Association of Australasian Paleontologists, 1:121144.Google Scholar
Runnegar, B. 1996. Early evolution of the Mollusca: the fossil record, p. 7787. In Taylor, J. (ed.), Origin and Evolutionary Radiation of the Mollusca. Oxford University Press, Oxford.Google Scholar
Runnegar, B., and Pojeta, J. Jr. 1985. Origin and diversification of the Mollusca, p. 157. In Trueman, E. R. and Clarke, M. R. (eds), The Mollusca, Volume 10, Evolution. Academic Press, Inc., Orlando, Florida.Google Scholar
Sandberg, P. A., and Hudson, J. D. 1983. Aragonite relic preservation in Jurassic calcite-replaced bivalves. Sedimentology, 30:879892.CrossRefGoogle Scholar
Taylor, J. D. 1973. The structural evolution of the bivalve shell. Palaeontology, 16:519534.Google Scholar
Taylor, J. D., and Layman, M. 1972. The mechanical properties of bivalve (Mollusca) shell structures. Palaeontology, 15:737387.Google Scholar
Termier, G., and Termier, H. 1972. La texture du test des Mollusques fossiles et actuels. Haliotis, 2:89119.Google Scholar
Termier, H., Termier, G., and Vachard, D. 1974. Une texture de conocardiidé dans l'Emsien de la Montagne Noire. Annales de la Société Gèologique du Nord. XXX:8792, pls. 12–14.Google Scholar
Watson, M. E., and Signor, P. W. 1986. How a clam builds windows: shell microstructure in Corculum (Bivalvia: Cardiidae). The Veliger, 28:348355.Google Scholar
Zavodowsky, V. M. 1960. New Permian representatives of Conocardiidae from northeastern SSSR, p. 3133. In Markovsky, B. P. (ed.), New Species of Fossil Plants and Invertebrates of the USSR, Volume 2, Vsesoyuz Nauchno-Issledovatelskii Geologicheskii Institut, Moscow. (In Russian)Google Scholar
Zhang, R. 1984. Early Silurian bivalves and rostroconchs in northwest Hunan, China. Acta Palaeontologica Sinica, 23(5):586596.Google Scholar