Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T04:32:41.605Z Has data issue: false hasContentIssue false

Sedilichnus, Oichnus, Fossichnus, and Tremichnus: ‘Small Round Holes in Shells’ Revisited

Published online by Cambridge University Press:  15 October 2015

John-Paul Zonneveld
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada, T2G 2E3,
Murray K. Gingras
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada, T2G 2E3,

Abstract

Small round pits and holes in fossil skeletal material are found in a wide variety of invertebrate substrates from diverse environmental settings. They are associated with parasitism, predation and commensal attachment. Four ichnogenera have been proposed for these trace fossils: Sedilichnus Müller, Oichnus Bromley, Tremichnus Brett and Fossichnus Nielsen, Nielsen and Bromley. Previous authors have established that Tremichnus is a junior synonym of Oichnus. Herein we show that Oichnus and Fossichnus are junior synonyms of Sedilichnus.

Sedilichnus, as defined herein, includes 10 ichnospecies. Sedilichnus spongiophilus, S. simplex, S. paraboloides, S. ovalis, S. coronatus, S. gradatus, S. halo, S. asperus, S. excavatus and S. solus. Consistent with previous work Sedilichnus ichnospecies are defined solely by morphological criteria and not by a priori assumptions regarding depositional environment or tracemaker. Thus, this ichnotaxon is recognized in both marine and continental settings on a wide variety of invertebrate skeletal tests. As is true with many ichnotaxa, Sedilichnus ichnospecies represent end-members in morphological spectra, however each ichnospecies is clearly differentiable from the others.

Sedilichnus spongiophilus are circular, non-penetrative pits in shells. Sedilichnus paraboloides are penetrative holes with spherical paraboloid forms and typically have larger external openings and smaller internal openings. Sedilichnus simplex are simple cylindrical borings that have both penetrative and non-penetrative forms. Sedilichnus coronatus differ from other forms by the presence of an etched or granular halo surrounding the boring. Sedilichnus gradatus have two concentric parts, an outer boring and an inner shelf of smaller diameter. Sedilichnus ovalis and S. asperus are both oval in outline differing in the presence of tapering paraboloid margins in S. ovalis and margins perpendicular to the substrate in S. asperus. Sedilichnus excavatus and S. solus are primarily non-penetrative and differ from other Sedilichnus by the presence of central, raised bosses or platforms. These two ichnospecies differ in the shapes of their external walls and the proportional thickness of the bounding groove.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, H. and Adams, A. 1854. The genera of Recent Mollusca 1. J. Van Viirst Publishers, London. 484 p.Google Scholar
Agassiz, L. 1847. Nomenclator zoologicus : continens nomina systematica generum animalium tam viventium quam fossilium, secundum ordinem alphabeticum disposita, adjectis auctoribus, libris, in quibus reperiuntur, anno editionis, etymologia et familiis, ad quas pertinent, in singulis classibus. C. L. Bonaparte, France, 393 p.Google Scholar
Aitken, A. E. and Risk, M. J. 1988. Biotic interactions revealed by macroborings in arctic bivalve molluscs. Lethaia, 21:339350.Google Scholar
Baumiller, T. K. 1990. Non-predatory drilling of Mississippian crinoids by Platyceratid gastropods. Palaeontology, 33:743748.Google Scholar
Baumiller, T. K., Bitner, A., and Emig, C. C. 2006. High frequency of drill holes in brachiopods from the Pliocene of Algeria and its ecological implications. Lethaia, 39:313320.Google Scholar
Bengston, S. and Zhao, Y. 1992. Predatorial borings in late Precambrian mineralized exoskeletons. Science, 257:367369.Google Scholar
Bertling, M., Braddy, D. J., Bromley, R. G., Demathieu, G. R., Genise, J., Mikuláş, R., Nielsen, J. K., Nielsen, K. S. S., Rindsberg, A. K., Schlirf, M., and Uchman, A. 2006. Names for trace fossils: a uniform approach. Lethaia, 39:265286.Google Scholar
Blissett, D. J. and Pickerill, R. K. 2003. Oichnus excavatus Donovan and Hagt, 2002 from the Montague Formation, White Limestone Group, Jamaica. Caribbean Journal of Science, 39:221223.Google Scholar
Blissett, D. J. and Pickerill, R. K. 2004. Observations from the White Limestone Group of Jamaica. Cainozoic Research, 3:167187.Google Scholar
Blissett, D. J. and Pickerill, R. K. 2007. Systematic ichnology of microborings from the Cenozoic White Limestone Group, Jamaica, West Indies. Scripta Geologica, 134:77108.Google Scholar
Brett, C. E. 1985. Tremichnus: a new ichnogenus of circular-parabolic pits in fossil echinoderms. Journal of Paleontology, 59:625635.Google Scholar
Bromley, R. G. 1981. Concepts in ichnology illustrated by small round holes in shells. Acta Geològica Hispànica, 16:5564.Google Scholar
Bromley, R. G. 1993. Predation habits of octopus past and present and a new ichnospecies, Oichnus ovalis . Bulletin of the Geological Society of Denmark, 40:167173.Google Scholar
Bromley, R. G. 2004. A stratigraphy of marine bioerosion, p. 455479. In McIlroy, D. (ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society of London Special Publication 228.Google Scholar
Cardosa, M. N. and Sensra, M. C. E. 2007. Tafonomia de formaníferos Bentônicos em sedimentos siliciclásticos e Carbonáticos. Anuario do Instituto de Geociências, 30:101108.Google Scholar
Carriker, M. R. 1981. Shell penetration and feeding by naticacean and muricacean predatory gastropods: a synthesis. Malacologia, 20:403422.Google Scholar
Carriker, M. R. and van Zandt, D. 1972. Predatory behavior of a shell-boring muricid gastropod, p. 157244. In Winn, H. E. and Olla, B. L. (eds.), Behavior of Marine Animals: Current Perspectives in Research I. Invertebrates. Plenum Press, New York.Google Scholar
Carriker, M. R. and Yochelson, E. L. 1968. Recent gastropod boreholes and Ordovician cylindrical borings. United States Geological Survey Professional Paper 593-B:126.Google Scholar
Ceranka, T. and Złotnik, M. 2003. Traces of cassid snails predation upon the echinoids from the middle Miocene of Poland. Acta Palaeontologica Polonica, 48:491496.Google Scholar
Chattopadhay, D. 2011. First evidence of predatory drilling from Upper Cretaceous Eutaw Formation, Georgia. Southeastern Geology, 48:3744.Google Scholar
Conrad, T. A. 1837. Description of the marine shells from upper California, collected by Thomas Nuttall. Journal of the Academy of Natural Sciences of Philadelphia, 7:227268.Google Scholar
Daley, G. M., Ostrowski, S., and Geary, D. H. 2007. Paleoenvironmentally correlated differences in a classic predator-prey system: the bivalve Chione elevate and its gastropod predators. PALAIOS, 22:166173.Google Scholar
Daly, A. C. 2007. Statistical analysis of mixed-motive shell borings in Ordovician, Silurian, and Devonian brachiopod from northern and eastern Canada. Canadian Journal of Earth Sciences, 45:213229.Google Scholar
Deline, B. 2008. The first evidence of predatory or parasitic drilling in stylophoran echinoderms. Acta Palaeontologica Polonica, 53:739743.Google Scholar
Dietl, G. P. and Kelley, P. H. 2006. Can naticid gastropod predators be identified by the holes they drill? Ichnos, 13:103108.Google Scholar
Donovan, S. K. and Harper, D. A. T. 2007. Rare borings in Pleistocene brachiopods from Jamaica and Barbados. Caribbean Journal of Science, 43:5964.Google Scholar
Donovan, S. K. and Jagt, J. W. M. 2002. Oichnus Bromley borings in the irregular echinoid Hemipneustes Agassiz from the type Maastrichtian (Upper Cretaceous, The Netherlands and Belgium). Ichnos, 9:6774.Google Scholar
Donovan, S. K. and Jagt, J. W. M. 2004. Site selectivity of pits in the chalk (Upper Cretaceous) echinoid Echinocorys Leske from France. Bulletin of the Mizunami Fossil Museum, 31:2124.Google Scholar
Donovan, S. K. and Jagt, J. W. M. 2005. An additional record of Oichnus excavatus Donovan and Jagt from the Maastrichtian (Upper Cretaceous of southern Limburg, The Netherlands). Scripta Geologica, 129:147150.Google Scholar
Donovan, S. K. and Pickerill, R. K. 2002. Pattern versus process or informative versus uninformative ichnotaxonomy: reply to Todd and Palmer. Ichnos, 9:8587.Google Scholar
Donovan, S. K., Lewis, D. N., and Kabrna, P. 2006. A dense epizoobiontic infestation of a Lower Carboniferous crinoid (Amphoracrinus gilbertsoni (Phillips)) by Oichnus paraboloides Bromley. Ichnos, 13:4345.Google Scholar
Dunlop, J. A. and Braddy, S. J. 2011. Ctenzia bavincourti and the nomenclature of arachnid-related trace fossils. The Journal of Arachnology, 39:250257.Google Scholar
Eckert, J. D. 1988. The ichnogenus Tremichnus in the lower Silurian of western New York. Lethaia, 21:281283.Google Scholar
Elder, H. Y. 1979. Studies of the host-parasite relationship between the parasitic prosobranch Thysa crystalline and the asteroid starfish Linckia laevigata . Journal of Zoology (London), 187:369382.Google Scholar
Feige, A. and Fürsich, F. T. 1991. Taphonomy of Recent molluscs of Bahia la Choya (Gulf of California, Sonora, Mexico). Zitteliana, 18:89133.Google Scholar
Fretter, V. and Graham, A. 1962. British Prosobranch Molluscs: Their Functional Anatomy and Ecology. Ray Society, London, 755 p.Google Scholar
Gibert, J. M. de, Domènech, R. and Martinell, J. 2004. An ethological framework for animal bioerosion trace fossils upon mineral substrates with proposal of a new class, fixichnia. Lethaia, 37:429437.Google Scholar
Gibert, J. M. de, Domènech, R. and Martinell, J. 2007. Bioerosion in shell beds from the Pliocene Roussillon Basin, France: implications for the (macro) bioerosion ichnofacies model. Acta Palaeontologica Polonica, 52:783798.Google Scholar
Gili, C., da Silva, C. M., and Martinell, J. 1995. Pliocene nassariids (Mollusca: Neogastropoda) of central-west Portugal. Tertiary Research, 15:95110.Google Scholar
Goldring, R. and Pollard, J. E. 1996. Ichnotaxonomic revision and the importance of type material. Palaeontology Newsletter, 31:78.Google Scholar
Gould, A. A. 1847. Description of New Shells received from Rev. Mr. Mason, of Burmah. Proceedings of the Boston Society of Natural History, ii:218221.Google Scholar
Gray, J. E. 1847. A list of the genera of recent Mollusca, their synonyma and types. Proceedings of the Zoological Society of London, 15:129219.Google Scholar
Hagan, T. H., Coniglio, M., and Edwards, T. W. D. 1998. Subfossil bioerosion of mollusc shells from a freshwater lake, Ontario, Canada. Ichnos, 6:117127.Google Scholar
Harper, E. M. 2002. Plio–Pleistocene octopod-drilling behavior in scallops from Florida. PALAIOS, 17:292295.Google Scholar
Harper, E. M. and Wharton, D. S. 2000. Boring predation and Mesozoic articulate brachiopods. Palaeogeography, Palaeoclimatology, Palaeoecology, 158:1524.Google Scholar
Harper, J. A. 1986. Diverse fauna at Beaver County fossil locality. Pennsylvania Geology, 17:1316.Google Scholar
Huebner, J. D. and Edwards, D. C. 1981. Energy budget of the predatory marine gastropod Polinicces duplicatus . Marine Biology, 61:221226.Google Scholar
Janssen, H.-H. 1985. Three epizoic gastropods from Malaysia and the Philippines. Zeitschrift für Paristenkunde (Parisitology Research), 71:553560.Google Scholar
Kabat, A. R. 1990. Predatory ecology of naticid gastropods with a review of shell boring predation. Malacologia, 32:155193.Google Scholar
Kaplan, P. and Baumiller, T. K. 2000. Taphonomic inferences on boring habit in the Richmondian Onniela meeki epibole. PALAIOS, 15:499510.Google Scholar
Kelley, P. H. 2008. Role of bioerosion in taphonomy: effect of predatory drillholes on preservation of mollusc shells, p. 451470. In Wisshak, M. and Tapanila, L. (eds.), Current Developments in Bioerosion. Erlangen Earth Conference Series Springer Verlag, Berlin.Google Scholar
Kelley, P. H. and Hansen, T. A. 2003. The fossil record of drilling predation on bivalves and gastropods, p. 113139. In Kelley, P. H., Kowalewski, M. and Hansen, T. A. (eds.), Predator-Prey Interactions in the Fossil Record. Kluwer Academic Publishers, New York.Google Scholar
Kier, P. M. 1981. A bored Cretaceous echinoid. Journal of Paleontology, 55:656659.Google Scholar
Kitchell, J.A., Boggs, C. H., Kitchell, J. F., and Rice, J. A. 1981. Prey selection by naticid gastropods: experimental tests and application to the fossil record. Paleobiology, 7:533552.Google Scholar
Klompmaker, A. A. 2009. Taphonomic bias on drill-hole intensities and paleoecology of Pliocene mollusks from Langenboom (Mill), the Netherlands. PALAIOS, 24:772779.Google Scholar
Köhler, R. 1924. Anomalies, irrégularitiés et déformations du test chez les échinides. Ann. Inst. Océanogr., N.S., 1:159480.Google Scholar
Köhler, R. and Vaney, G. 1908. Description d'un nouveau genre de prosobrache parasite sur certains échinides (Pelseneeria). Bulletin de l'Institut océanographique de Monaco, 118:116.Google Scholar
Kowalewski, M. 1993. Morphometric analysis of predatory drillholes. Palaeogeography, Palaeoclimatology, Palaeoecology, 102:6988.Google Scholar
Linnaeus, C. 1758. Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus, I. Editio decima, reformata. Holmiæ. (Salvius), Stockholm, 824 p.Google Scholar
Lorenzo, N. and Verde, M. 2004. Estucturas de bioerosión en moluscos marinos Formación de la Villa Soriano. (Pleistoceno Tardío-Holoceno) de Uruguay. Revista Brasileira de Paleontologica, 7:319328.Google Scholar
Martinell, J., Domènech, R., Aymar, J., and Kowalewski, M. 2010. Confamilial predation in Pliocene naticid gastropods from southern France: utility of preexisting collections in quantitative paleoecology. PALAIOS, 25:221228.Google Scholar
Morris, S. C. and Bengston, S. 1994. Cambrian predators: possible evidence from boreholes. Journal of Paleontology, 68:123.Google Scholar
Müller, A. H. 1977. Zur ichnologie der subherzynen Oberkreide (Campan). Zeitschrift für geologische Wissenschaften, Berlin, 5:881897.Google Scholar
Muñoz, F. R. 1997. Importancia de la bioerosión en e-ostrácados actuals del litoral de Huelva (SW España). Geogaceta, 21:195198.Google Scholar
Neumann, C. and Wisshak, M. 2009. Gastropod parasitism on Late Cretaceous to Paleocene holasteroid echinoids—evidence from Oichnus halo isp. n. Palaeogeography, Palaeoclimatology, Palaeoecology, 284:115119.Google Scholar
Nielsen, J. K. and Nielsen, K. S. S. 2002. Pattern versus process or informative versus uninformative Ichnotaxonomy: reply to Todd and Palmer. Ichnos, 9:8384.Google Scholar
Nielsen, K. S. S. and Nielsen, J. K. 2001. Bioerosion in Pliocene to late Holocene tests of benthic and planktonic foraminiferans, with a revision of the ichnogenera Oichnus and Tremichnus . Ichnos, 8:99116.Google Scholar
Nielsen, K. S. S., Nielsen, J. K., and Bromley, R. G. 2001. Palaeoecological and ichnological significance if microborings in Quaternary Foraminifera. Palaeontologica Electronica 6, 13 p.Google Scholar
Nixon, M. 1979. Has Octopus vulgaris a second radula? Journal of the Zoological Society of London, 187:291296.Google Scholar
Olivi, G. 1792. Zoologia Adriatica, ossia catalogo ragionato degli animali del golfo e della lagune di Venezia. Bassano, Venecia, 334 p.Google Scholar
Peitso, E., Hui, E., Hartwick, B., and Bourne, N. 1994. Predation by the naticid gastropod Polinices lewisii (Gould) on littleneck clams Protothaca staminea (Conrad) in British Columbia. Canadian Journal of Zoology, 72:319325.Google Scholar
Pek, I. and Mikuláş, R. 1996. The ichnogenus Oichnus Bromley, 1981—predation traces in gastropod shells from the Badenian in the vicinity of Ceska Trebova (Czech Republic). Vestník Ceského geologického ústavu, 71:107120.Google Scholar
Pickerill, R. K. and Donovan, S. K. 1998. Ichnology of the Pliocene Bowden Shell Bed, southeast Jamaica. Contributions to Tertiary and Quaternary Geology, 35:161175.Google Scholar
Reyment, R. 1999. Drilling gastropods, p. 197204. In Savazzi, E. (ed.), Functional Morphology of the Invertebrate Skeleton. John Wiley and Sons Ltd., New Jersey.Google Scholar
Röding, P. F. 1798. Museum Boltenianum sive catalogus cimeliorum e tribus regnis naturæ quæ olim collegerat Joa. Bolten, Fried, M. D. p. d. per XL. annos proto physicus Hamburgensis. Pars secunda continens conchylia sive testacea univalvia, bivalvia & multivalvia. Hamburg, Germany, 199 p.Google Scholar
Ruiz-Muñoz, R. and González-Regalado, M. L. 1989. Bioerosión en ostrácados. Geogaceta, 6:8790.Google Scholar
Santos, A., Mayoral, E., Muñiz, F., Bajo, I., and Adriaensens, O. 2003. En el sector Surroccidental de la Cuenca del Guadalquivir (Provincia de Sevilla). Revista Española de Paleontología, 18:131141.Google Scholar
Savazzi, E. and Reyment, R. A. 1989. Subaerial hunting behaviour in Natica gualteriana (naticid gastropod). Palaeogeography, Palaeoclimatology, Palaeoecology, 74:355364.Google Scholar
Say, T. 1822. An account of some of the marine shells of the United States. Journal of the Academy of Natural Sciences of Philadelphia, 2:221248, 257–276, 302–325.Google Scholar
Scopoli, G. A. 1777. Introductio ad historiam naturalem, sistens genera lapidum, plantarum et animalium hactenus detecta, caracteribus essentialibus donata, in tribus divisa, subinde ad leges naturae. Prague, 589 p.Google Scholar
Signorelli, J. H., Pastorino, G., and Griffin, M. 2006. Naticid boreholes on a Tertiary cylichnid gastropod from southern Patagonia. Malacologia, 48:299304.Google Scholar
Streng, M., Esper, O., and Wollenburg, J. 2011. Calcareous dinoflagellate cysts from the Pleistocene (Marine Isotope Stage 31) of the Ross Sea, Antarctica. Antarctic Science, 23:597604.Google Scholar
Taddei Ruggiero, E. 1999. Bioerosive processes affecting a population of brachiopods (upper Pliocene, Apulia). Bulletin of the Geological Society of Denmark, 45:169172.Google Scholar
Taddei, Ruggiero, and Aunnunziata, E. G. 2002. Bioerosion on a Terebratula scillae population from the lower Pleistocene of Lecce area (Southern Italy). Acta Geologica Hispanica, 37:4351.Google Scholar
Taddei Ruggiero, E., Buono, G., and Raia, P. 2006. Bioerosion on brachiopod shells of a thanatocoenosis of Alboran Sea (Spain). Ichnos, 13:175184.Google Scholar
Tapanila, L. 2005. Palaeoecology and diversity of endosymbionts in Palaeozoic marine invertebrates: trace fossil evidence. Lethaia, 38:8999.Google Scholar
Taylor, J. D., Cleevely, R. J., and Morris, N. J. 1983. Predatory gastropods and their activities in the Blackdown Greensand (Albian) of England. Palaeontology, 26:521533.Google Scholar
Thomas, R. D. K. 1976. Gastropod predation on sympatric Neogene species of Glycymeris (Bivalvia) from the Eastern United States. Journal of Paleontology, 50:488499.Google Scholar
Todd, J. A. and Palmer, T. J. 2002. Pattern versus process or informative versus uninformative ichnotaxonomy. Ichnos, 9:8384.Google Scholar
Vermeij, G. J. 1980. Drilling predation of bivalves in Guam: some paleoecological implications. Malacologia, 19:329334.Google Scholar
Ward, L. W. and Blackwelder, B. W. 1975. Chesapecten, a new genus of Pectinidae (Mollusca: Bivalvia) from the Miocene and Pliocene of Eastern North America. United States Geological Survey Professional Paper 861, 39 p.Google Scholar
Warén, A. 1980. Revisions of the genera Thyca, Stilifer, Scalenostoma, Mucronalia and Echineulima (Mollusca, Prosobranchia, Eulimidae). Zoologica Scripta, 9:187210.Google Scholar
Wilson, M. A., Feldman, H. R., and Krivicich, E. B. 2010. Bioerosion in an equatorial Middle Jurassic coral-sponge reef community (Callovian, Matmor Formation, southern Israel). Palaeogeography, Palaeoclimatology, Palaeoecology, 289:93101.Google Scholar
Yochelson, E. L., Dockery, D., and Wolf, H. 1983. Predation on sub-Holocene scaphopod mollusks from southern Louisiana. United States Geological Survey Professional Paper 1282, p. 113.Google Scholar
Zamora, S., Mayoral, E., Gámez Vintaned, J. A., Bajo, S., and Espílez, E. 2008. The infaunal echinoid Micraster: taphonomic pathways indicated by sclerozoan trace and body fossils from the Upper Cretaceous of northern Spain. Geobios, 41:1529.Google Scholar
Ziegelmeier, E. 1954. Beobachtungen fiber den Nahrungserwerb bei der Naticide Lunatia nitida Donovan (Gastropoda, Prosobranchaia). Helgoländer wissenschaftliche Meeresunters, 5:133.Google Scholar