Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T13:02:22.388Z Has data issue: false hasContentIssue false

Revision of the hydroid Plumalina Hall, 1858 in the Silurian and Devonian of New York

Published online by Cambridge University Press:  14 July 2015

A. D. Muscente
Affiliation:
Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853; present address: Department of Geosciences, Virginia Tech, 4044 Derring Hall (0420), Blacksburg, VA 24061, USA
Warren D. Allmon
Affiliation:
Paleontological Research Institution and Department of Earth and Atmospheric Sciences, Cornell University, 1259 Trumansburg Road, Ithaca, NY 14850, USA,

Abstract

The feather-shaped Plumalina Hall, 1858 is revised on the basis of new and reexamined specimens from New York. Previously described from Givetian through Famennian deposits, a single compression of P. tenera n. sp. from the Rochester Shale extends the range into the Wenlock, and provides new information regarding Plumalina's biology. We assess the utility of morphologic characters in diagnoses of taxa, and present the first quantitative analysis of fossil hydroids to distinguish P. brevis n. sp. (Frasnian) from other Devonian species.

Plumalina has been compared to plants, graptolites, and octocorals. Some interpretations have proposed affinities among hydrozoans based on colony form and the presence of putative polyp bases. Our analysis shows that, like extant thecate hydrozoans, Plumalina had a delicate, chitinous hydrocaulus with weakly articulated hydrocladia. An assemblage of in situ specimens, steeply inclined relative to the bedding plane in an Ithaca Formation (Frasnian Stage) turbidite, indicates that Devonian species produced sessile, erect colonies attached to a hard substrate, comparable to extant hydroids that feed in currents. Morphometric comparisons between putative Plumalina polyp bases and polyp bases of modern analogues reveal similarities to hydroids in the superfamily Plumularioidea McCrady, 1859. Plumalina is the most abundant fossil hydroid so far reported, and is pertinent to interpretations of the hydrozoan record.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, L. 1862. Contributions to the Natural History of the United States of America, Second Monograph, Volume 4. Little, Brown, and Company, Boston, Massachusetts, 380p.Google Scholar
Baird, G. C., Brett, C. E., and Kirchgasser, W. T. 1988. Genesis of black shale roofed discontinuities in the Devonian Genesee formation, western New York State, p. 357375. InMcMillan, N. J., Embry, A. F., and Glass, D. J.(eds.), Devonian of the World, Vol. 2. The Canadian Society of Petroleum Geologists, Calgary, Canada, 674 p.Google Scholar
Botting, J. P., Muir, L. A., Sutton, M. D., and Barnie, T. 2011. Welsh gold: A new exceptionally preserved pyritized Ordovician biota. Geology, 39:879882.CrossRefGoogle Scholar
Bouillon, J. and Boero, F. 2000. The Hydrozoa: A new classification in the light of old knowledge. Thalassia Salentina, 24:145.Google Scholar
Bouillon, J., Gravili, C., Pagès, F., Gili, J.-M., and Boero, F. 2006. An Introduction to Hydrozoa. Muséum National d′Histoire Naturelle, Paris, France, 591p.Google Scholar
Boyer, D. L. and Droser, M. L. 2009. Palaeoecological patterns within the dysaerobic biofacies: Examples from Devonian black shales of New York state. Palaeogeography, Palaeoclimatology, Palaeoecology, 276:206216.CrossRefGoogle Scholar
Brett, C. E. 1983. Stratigraphy and facies relationships of the Silurian Rochester Shale (Wenlockian: Clinton Group) in New York State and Ontario. Proceedings Rochester Academy of Science, 15:118141.Google Scholar
Broch, H. 1910. Die hydroiden der Arktischen meere. Fauna Arctica, 5:128248.Google Scholar
Chapman, F. 1919. Some hydroid remains of lower Paleozoic age from Mongetta, near Lance field (Australia). Proceedings of the Royal Society of Victoria, 31:388393.Google Scholar
Chapman, F. and Thomas, D. E. 1936. The Cambrian hydroids of the Heathcote and Monegeeta districts. Proceedings of the Royal Society of Victoria, 48:193212.Google Scholar
Claus, C. 1877. Studien über Polypen und Quallen der Adria. Denkschriften der Kaiserlichen Akademie der Wissenschaften Wien, 38:164.Google Scholar
Cope, J. C. W. 2005. Octocorallian and hydroid fossils from the lower Ordovician of Wales. Palaeontology, 48:433445.CrossRefGoogle Scholar
Craft, J. H. and Bridge, J. S. 1987. Shallow-marine sedimentary processes in the Late Devonian Catskill Sea, New York State. Geological Society of America Bulletin, 98:338355.2.0.CO;2>CrossRefGoogle Scholar
Dawson, J. W. 1862. On the flora of the Devonian period in North Eastern America. Quarterly Journal of the Geological Society of London, 18:296330.CrossRefGoogle Scholar
Decker, C. E. 1948. A new species of hydrozoan from the Athens Shale of Virginia. Journal of Paleontology, 22:528529.Google Scholar
Decker, C. E. 1952. A new hydrozoan from the Devonian of Michigan. Journal of Paleontology, 26:656658.Google Scholar
Eisenack, A. 1932. Neue mikrofossilien des baltischen Silurs. II. Paläontologische Zeitschrift, 14:256275.CrossRefGoogle Scholar
Eisenack, A. 1934. Neue mikrofossilien des baltischen Silurs. III. und neue mikrofossilien des böhmischen Silurs. I. Paläontologische Zeitschrift, 16:5276.CrossRefGoogle Scholar
Fry, W. L. and Banks, H. P. 1955. Three new genera of algae from the Upper Devonian of New York. Journal of Paleontology, 29:3744.Google Scholar
Frykman, P. 1979. Ordovician chitinous hydroids from Peary Land, eastern North Greenland. Rapport Grønlands Geologiske Undersøgelse, 91:2527.CrossRefGoogle Scholar
Glinski, A. 1956. Plumalina conservata n. sp. (Gorgonaria) aus dem Mittel-Devon der Eifel. Senckenbergianna Lethaea, 37:5357.Google Scholar
Haeckel, E. 1879. Das System der Medusen: Erster Theil einer Monographie der Medusen Mit Einem Atlas von Vierzeg Tafeln. Denkschriften der Medizinische-Naturwissenschaftlich Gesellschaft zu Jena, 672p.Google Scholar
Hall, J. 1843. Geology of New York. Part IV. Comprising the Survey of the Fourth Geological District. Carroll and Cook, Albany, New York, 683p.Google Scholar
Hall, J. 1858. On the genus Graptolithus. Canadian Naturalist and Geologist and Proceedings of the Natural History Society of Montreal, 3:162177.Google Scholar
Hall, J. 1878. Note on the genus Plumalina. Annual Report on the New York State Museum of Natural History by the Regents of the University of the State of New York, 13:255256.Google Scholar
Harris, V. A. 1990. Sessile Animals of the Sea Shore. Chapman and Hall, London, 379p.Google Scholar
Howell, B. F. 1949. New hydrozoan and brachiopods and new genus of worms from the Ordovician Schenectady Formation of New York. Bulletin of the Wagner Free Institute of Science, 24:18.Google Scholar
Hughes, R. G. and Henderson, D. H. J. 1989. Morphological adaptations of Aglaophenia harpago (Hydrozoa: Plumulariidae) to enhance feeding efficiency. Journal of Marine Biological Association of the United Kingdom, 69:1725.CrossRefGoogle Scholar
Isachsen, Y. W., Landing, E., Lauber, J. M., Rickard, L. V., and Rogers, W. B. 2000. Geology of New York: A Simplified Account (second edition). The New York State Education Department, Albany, New York, 284p.Google Scholar
Jarvis, F. E. 1922. The hydroids from the Chagos, Seychelles and other islands from the coasts of British East Africa and Zanzibar. Transactions of the Linnean Society of London, second series. Zoology, 18:331360.Google Scholar
Kozłowski, R. 1959. Les hydroides Ordoviciens à squelette chitineux. Acta Paleontologica Polonica, 4:209271.Google Scholar
Lamouroux, J. V. F. 1812. Extrait dun mémoire des polypiers coralligènes non entièrement pierreux. Noveau Bulletin des Sciences par la Société Philomatique de Paris, 3:181188.Google Scholar
Landing, E. 1989. Paleoecology and distribution of the Early Cambrian rostroconch Watsonella crosbyi Grabau. Journal of Paleontology, 63:566573.CrossRefGoogle Scholar
Landing, E. 1993. In situ earliest Cambrian tube worms and the oldest metazoan-constructed biostrome (Placentian Series, Southeastern Newfoundland). Journal of Paleontology, 67:333342.CrossRefGoogle Scholar
Leclère, L., Schuchert, P., and Manuel, M. 2007. Phylogeny of the Plumularioidea (Hydrozoa, Leptothecata): evolution of colonial organization and life cycle. Zoologica Scripta, 36:371394.CrossRefGoogle Scholar
Leclère, L., Schuchert, P., Cruaud, C., Couloux, A., and Manuel, M. 2009. Molecular phylogenetics of Thecata (Hydrozoa, Cnidaria) reveals long-term maintenance of life history traits despite high frequency of recent character changes. Systematic Biology, 58:509526.CrossRefGoogle ScholarPubMed
Lesquereux, L. 1880. Description of Coal Flora of the Carboniferous Formation in Pennsylvania and Throughout the United States, Volume 1. The Board of Commissioners for the Second Geological Survey, Harrisburg, Pennsylvania, 353p.Google Scholar
Linnaeus, C. 1758. Systema Naturae, per Regna tria Naturae, secundum Classes, Ordines, Genera, Species cum Characteribus, Differentiis, Synonymis, Locis. Tomus, I.Editiodecima. Laurentii Salvii, Holmiae, 824p.CrossRefGoogle Scholar
Linsley, D. M. 1994. Devonian paleontology of New York. The Paleontological Research Institution, Ithaca, New York, 472p.Google Scholar
Marktanner-Turneretscher, G. 1890. Die Hydroiden des k.k. naturhistorischen Hofmuseums. Annalen des K.K. Naturhistorischen Hofmuseums, 5:195286.Google Scholar
McCrady, J. 1859. Gymnopthalmata of Charleston harbor. Proceedings of the Elliott Society of Natural History, 1:103221.Google Scholar
Mierzejewski, P. 1986. Ultrastructure, taxonomy and affinities of some Ordovician and Silurian organic microfossils. Palaeontologia Polonica, 47:129220.Google Scholar
Moura, C. J., Harris, D. J., Cunha, M. R., and Rogers, A. D. 2008. DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments. Zoologica Scripta, 37:93108.CrossRefGoogle Scholar
Nemec, W. 1988. The shape of the rose. Sedimentary Geology, 59:149152.CrossRefGoogle Scholar
Nitecki, M. H. and Richardson, E. S. Jr. 1972. A new hydrozoan from the Pennsylvanian of Illinois. Fieldiana Geology, 30:17.Google Scholar
Owen, R. 1843. Lectures on the Comparative Anatomy and Physiology of the Invertebrate Animals, Delivered at the Royal College of Surgeons in 1843. Longman, Brown, Green, and Longmans, London, England, 392p.Google Scholar
Parsons, K. M., Brett, C. E., and Miller, K. B. 1988. Taphonomy and depositional dynamics of Devonian shell-rich mudstones. Palaeogeography, Paleoclimatology, Palaeoecology, 63:109139.CrossRefGoogle Scholar
Quilty, P. G. 1971. Cambrian and Ordovician dendroids and hydroids of Tasmania. Journal of the Geological Society of Australia: An International Geoscience Journal of the Geological Society of Australia, 17:171189.CrossRefGoogle Scholar
Rowley, R. R. 1908. The Geology of Pike County, Volume 8 (second series). The Hugh Stephens Printing Company, Jefferson City, Missouri, 118p.Google Scholar
Rickard, L.V. 1975. Correlation of the Silurian and Devonian rocks in New York State. New York State Museum and Science Service, Map and Chart Series 24, 16p.Google Scholar
Ruedemann, R. 1916. Account of some new or little-known species of fossils. New York State Museum Bulletin, 189:1012.Google Scholar
Sass, D. B. and Rock, B. N. 1975. The genus Plumalina Hall, 1858 (Coelenterata)—re-examined. Bulletins of American Paleontology, 67:407422.Google Scholar
Schäfer, W. 1972. Ecology and Palaeoecology of Marine Environments. The University of Chicago Press, Chicago, Illinois, 568p.Google Scholar
Schierwater, B. and Ender, A. 2000. Sarsia marii n. sp. (Hydrozoa, Anthomedusae) and the use of 16s rDNA sequences for unpuzzling systematic relationships in Hydrozoa. Scientia Marina, 64:117122.CrossRefGoogle Scholar
Schram, F. R. and Nitecki, M. H. 1975. Hydra from the Illinois Pennsylvanian. Journal of Paleontology, 49:549551.Google Scholar
Scott, A. J. 1961. Three new conodonts from the Louisiana Limestone (Upper Devonian) of Western Illinois. Journal of Paleontology, 35:12231227.Google Scholar
Shumard, B. F. 1855. The First and Second Report on the Geological Survey of Missouri, Pt. 2. James Lusk, Jefferson City, Missouri, 239p.Google Scholar
Skevington, D. 1965. Chitinous hydroids from the Ontikan Limestones (Ordovician) of Öland, Sweden. Geologiska Föreningens i Stockholm Förhandlingar, 87:154162.CrossRefGoogle Scholar
Soja, C. M., Mitchell, M., Newton, A. J., Vendetti, J., Visaggi, C., Antoshkina, A. I., and White, B. 2003. Paleoecology of sponge-?hydroid associations in Silurian microbial reefs. PALAIOS, 18:225235.2.0.CO;2>CrossRefGoogle Scholar
Taylor, P. D. 1988. A probable thecate hydroid from the Upper Cretaceous of southern England preserved by bioimmuration. Paläontologische Zeitschrift, 62:167174.CrossRefGoogle Scholar
Taylor, W. L. and Brett, C. E. 1996. Taphonomy and paleoecology of echinoderm lagerstatten from the Silurian (Wenlockian) Rochester Shale. PALAIOS, 11:118140.CrossRefGoogle Scholar
Vanuxem, L. 1842. Geology of New York, Part III: Comprising the Survey of the Third Geological District. W. and White, A. and Visscher, J., Albany, New York, 306p.Google Scholar
Voigt, E. 1973. Hydrallmania graptolithiformis n. sp., eine durch biomuration erhaltene Sertulariidae (Hydroz.) aus der Maastrichter Tuffkreide. Paläontologische Zeitschrift, 47:2531.CrossRefGoogle Scholar
Waggoner, B. M. and Langer, M. R. 1993. A new hydroid from the Upper Cretaceous of Mississippi. Paläontologische Zeitschrift, 67:253259.CrossRefGoogle Scholar
Williams, J. S. 1943. Stratigraphy and fauna of the Louisiana Limestone of Missouri. U.S. Geological Survey Professional Paper, 203:5859.Google Scholar
Zambito, J. J. IV, Brett, C. E., Baird, G. C., Kolbe, S. E., and Miller, A. I. 2012. New perspectives on transitions between ecological-evolutionary subunits in the “type interval” for coordinated stasis. Paleobiology, 38:664681.CrossRefGoogle Scholar
Zambito, J. J. IV, Baird, G. C., Brett, C. E., and Bartholomew, A. J. 2009. Depositional sequences and paleontology of the Middle–Upper Devonian transition (Genesee Group) at Ithaca, New York: a revised lithostratigraphy for the northern Appalachian Basin. Palaeontographica Americana, 63:4969.Google Scholar