Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-20T17:27:07.742Z Has data issue: false hasContentIssue false

Remarks on the Cortical Structure of Late Paleozoic “Phylloid Algae”

Published online by Cambridge University Press:  15 October 2015

Diego Corrochano
Affiliation:
Facultad de Ciencias, Departamento de Geología, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain,
Daniel Vachard
Affiliation:
Université Lille 1, UMR 8217 du CNRS, Géosystèmes, 59655 Villeneuve d'Ascq cedex, France,

Abstract

The cortical structure of the green anchicodiacean alga Anchicodium in the Pennsylvanian Dueñas Formation of the Cantabrian Zone (northwestern Spain) is described and illustrated. Anchicodium is characterized by a broad phylloid or leaflike calcified thallus, consisting of a bilateral cortex and a poorly calcified central medulla. The organization and morphology of the cortical system have been revealed with great detail using cathodoluminescence microscopy. Anchicodium cortex is composed of up to three (four?) orders of dichotomized branched cortical siphons that are usually swollen at the center; primary siphons are bulbous and are followed by elongate cylindrical siphons. Cortical siphons are preserved as dull-bright luminescent molds filled with micrite or microsparite, and contrast sharply with the surrounding non-luminescent calcite infilling the intersiphonal spaces, originally occupied by aragonite. Anchicodium in the Dueñas Formation exhibits a variety of preservational stages. Through a compilation of the taxonomic nomenclature and morphologic re-interpretations, it is concluded that some late Paleozoic anchicodiacean algae might represent diagenetic stages of Anchicodium or Eugonophyllum without any taxonomic significance. This conclusion is suggested particularly for the taphotaxon Ivanovia.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, K. D. and Beauchamp, B. 2010. The origin and ecology of late Paleozoic Palaeoaplysina in Arctic Canada: an aberrant ancestral coralline algae (?) that grew at a time of high atmospheric CO2 . GeoCanada 2010–Working with the Earth, conference abstract, <http://cseg.ca/assets/files/resources/abstracts/2010/0689_GC2010_The_Origin_and_Ecology_of_late_Paleozoic_Palaeoaplysina.pdf>..>Google Scholar
Baars, D. L. 1992. Kansaphyllum, a new late Pennsylvanian phylloid algal genus. Journal of Paleontology, 66:697701.Google Scholar
Baars, D. L. and Torres, A. M. 1991. Late Paleozoic phylloid algae, a pragmatic review. PALAIOS, 6:513515.Google Scholar
Barba, P., Heredia, N., and Villa, E. 1991. Estratigrafía y edad del grupo Lena en el sector de Lois-Ciguera (Cuenca Carbonífera Central, NO de España). Revista de la Sociedad Geológica de España, 4:6177.Google Scholar
Borowitzka, M. A. and Larkum, A. W. D. 1977. Calcification in the green alga Halimeda I. An ultrastructure study of thallus development. Journal of Phycology, 13:616.Google Scholar
Chuvashov, B. I., Luchinina, V. A., Shuysky, V. P., Shaikin, I. M., Berchenko, O. I., Ishchenko, A. A., Saltovskaya, V. D., and Shirshova, D. I. 1987. Iskopaemye izvestkovye vodorosli morfologiya, sistematika, metody izucheniya [Fossil calcareous algae, morphology, systematics, methods of study]. Akademiya Nauk SSSR, Sibirskoe Otdelenie, Trudy Instituta Geologii i Geofiziki, 674:5224. (In Russian) Google Scholar
Corrochano, D. and Barba, P. 2007. Estratigrafía, sedimentología y evolución isotópica del tránsito Podolskiense–Myachkoviense (sector Lois-Ciguera, Cuenca Carbonífera Central, Zona Cantábrica). Studia Geologica Salmanticensia, 43:67114.Google Scholar
Corrochano, D., Barba, P., and Colmenero, J. R. 2012. Glacioeustatic cyclicity of a Pennsylvanian carbonate platform in a foreland basin setting: an example from the Bachende Formation of the Cantabrian Zone (NW Spain). Sedimentary Geology, 245–246:7693.Google Scholar
Corrochano, D., Vachard, D., and Armenteros, I. 2013. New insights on the red alga Archaeolithophyllum and its preservation from the Pennsylvanian of the Cantabrian Zone (NW Spain). Facies, 59:949967.Google Scholar
Cózar, P. and Vachard, D. 2004. Morphological adaptations of Late Mississippian problematic alga Calcifolium to fluctuating palaeoecologic environments. Lethaia, 37:351363.Google Scholar
Cross, T. A. and Klosterman, M. J. 1981. Autoecology and development of a stromatolitic-bound phylloid algal bioherm, Laborcita Formation (lower Permian), Sacramento Mountains, New Mexico, U.S.A., p. 4559. In Monty, C. (ed.), Phanerozoic Stromatolites. Case Histories. Springer-Verlag, Berlin, New York.Google Scholar
Dallmeyer, R. D., Catalán, J. R. M., Arenas, R., Gil-Ibarguchi, J. I., Gutiérrez-Alonso, G., Farias, P., Bastida, F., and Aller, J. 1997. Diachronous Variscan tectonothermal activity in the NW Iberian Massif: evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics, 277:307337.Google Scholar
Dawson, W. C. 1992. Phylloid algal microstructures enhanced by epifluorescence petrography. Journal of Paleontology, 66:523525.Google Scholar
Dawson, W. C. and Carozzi, A. 1993. Experimental deep burial, fabric-selective dissolution in Pennsylvanian phylloid algal limestones. Carbonates and Evaporites, 8:7181.Google Scholar
Dickson, J. A. D. 1966. Carbonate identification and genesis revealed by staining. Journal of Sedimentary Petrology, 36:491505.Google Scholar
Dickson, J. A. D., Smalley, P. C., and Kirkland, B. L. 1991. Carbon and oxygen isotopes in Pennsylvanian biogenic and abiogenic aragonite (Otero County, New Mexico): a laser microprobe study. Geochimica et Cosmochimica Acta, 55:26072613.Google Scholar
Dragastan, O., Litter, D. S., and Litter, M. M. 2002. Recent vs. fossil Halimeda species of Angaur Island, Palau and adjacent western Pacific areas. Acta Palaeontologica Romaniae, Special Publication, 1:320.Google Scholar
Elliott, G. F. 1982. A new calcareous green alga from the Middle Jurassic of England: its relationships and evolutionary position. Palaeontology, 25:431437.Google Scholar
Endo, R. 1951. Stratigraphical and paleontological studies of the later Paleozoic calcareous algae in Japan I. Several species of the Sallamotozawa, Hikoroichi-mura Kesengum, in Kitakami Mountaineous Land. Transactions and Proceedings of the Paleontological Society of Japan, 4:121129.Google Scholar
Endo, R. 1952. Stratigraphical and paleontological studies of the later Paleozoic calcareous algae in Japan IV. Notes on the calcareous algae of the Omi Limestone. Transactions and Proceedings of the Paleontological Society of Japan, 8:241248.Google Scholar
Endo, R. and Kanuma, M. 1954. Stratigraphical and paleontological studies of the later Paleozoic calcareous algae in Japan, VII. Geology of the Mino Mountain Land and southern part of Hida Plateau, with description of the algal remains found in those districts. The Science Reports of the Saitama University series B, 1:177205.Google Scholar
Flügel, E. 2004. Microfacies of carbonate rocks. Springer, Berlin, 976 p.Google Scholar
Forsythe, G. 2003. A new synthesis of Permo–Carboniferous phylloid algal reef ecology, p. 171188. In Ahr, W., Harris, P. M., Morgan, W. A., and Somerville, I. D. (eds.), Permo–Carboniferous Carbonate Platforms and Reefs. SEPM Special Publication 78.Google Scholar
Ginkel, A. C. V. 1965. Carboniferous fusulinids from the Cantabrian Mountains (Spain). Leidse Geologische Mededelingen, 34:1225.Google Scholar
Granier, B. 2012. The contribution of calcareous green algae to the production of limestones: a review. Geodiversitas, 34:3560.Google Scholar
Hay, M. E., Kappel, Q. E., and Fenical, W. 1994. Synergisms in plant defenses against herbivores: interactions of chemistry, calcification, and plant quality. Ecology, 75:17141726.Google Scholar
Hillis-Colinvaux, L. 1980. Ecology and taxonomy of Halimeda: primary producer of coral reefs. Advances in Marine Biology, 17:1312.Google Scholar
Hillis-Colinvaux, L. 1984. Systematics of the Siphonales, p. 271286. In Irvine, D. E. G. and John, D. D. (eds.), Systematics of the Green Algae. Academic Press, London.Google Scholar
Homann, W. 1972. Unter- und tief-mittelpermische Kalkalgen aus dem Rattendorfer Schichten, dem Trogkofel Kalk und dem Treßdorfer Kalk der Karnischen Alpen (Österreich). Senckenbergiana Lethaea, Band 53 (3/4):135313.Google Scholar
James, N. P., Wray, J. L., and Ginsburg, R. N. 1988. Calcification of encrusting aragonitic algae (Peyssonneliaceae): implications for the origin of late Paleozoic reefs and cements. Journal of Sedimentary Research, 58:291303.Google Scholar
Johnson, J. H. 1946. Lime-secreting algae from the Pennsylvanian and Permian of Kansas. Geological Society of America Bulletin, 57:10871120.Google Scholar
Julivert, M. 1971. Decollement tectonics in the Hercynian Cordillera of NW Spain. American Journal of Science, 270:129.Google Scholar
Khvorova, I. V. 1946. A new genus of algae from the middle Carboniferous deposits of the Moscow Basin. Comptes Rendus de l'Académie des Sciences de l'URSS, 23:737739.Google Scholar
Kiessling, W., Flügel, E., and Golonka, J. L. 2003. Patterns of Phanerozoic carbonate platform sedimentation. Lethaia, 36:195226.Google Scholar
Kirkland, B. L., Moore, C. H. J., and Dickson, J. A. D. 1993. Well preserved, aragonitic phylloid algae (Eugonophyllum, Udoteacea) from the Pennsylvanian Holder Formation, Sacramento Mountains, New Mexico. PALAIOS, 8:111120.Google Scholar
Konishi, K. and Wray, J. L. 1961. Eugonophyllum, a new Pennsylvanian and Permian genus. Journal of Paleontology, 35:659666.Google Scholar
Laporte, L. O. F. 1962. Paleoecology of the Cottonwood Limestone (Permian), northern Mid-Continent. Geological Society of America Bulletin, 73:521544.Google Scholar
Lemosquet, Y. and Poncet, J. 1977. Etude de quelques Algues calcaires et de quelques microfaciès du Carbonifère du bassin de Béchar (Sahara Sud-Oranais, Algérie). Bulletin de la Société géologique de France, 19:335339.Google Scholar
Littler, D. S. and Littler, M. M. 1990. Systematics of Udotea species (Bryopsidales, Chlorophyta) in the tropical western Atlantic. Phycologia, 29:206252.Google Scholar
Mamet, B. 1991. Carboniferous calcareous algae, p. 370451. In Riding, R. (ed.), Calcareous Algae and Stromatolites. Springer-Verlag, Berlin.Google Scholar
Mamet, B. 1994. Algues calcaires marines du Paleozoic Superieur (Equateur, Bolivie). Annales de la Societé Geologique de Belgique, 117:155167.Google Scholar
Mamet, B. and Preat, A. 1983. Resteignella resteignensis, une phylloïde nouvelle du Givétien de la Belgique. Bulletin de la Société Belge de Géologie, 92:293300.Google Scholar
Mamet, B. and Villa, E. 2004. Calcareous marine algae from the Carboniferous (Moscovian–Gzhelian) of the Cantabrian Zone (NW Spain). Revista Española de Paleontología, 19:151190.Google Scholar
Martínez-Catalán, J. R., Arenas, R., Díaz-García, F., and Abati, J. 1999. Allochthonous units in the Variscan belt of NW Iberia. Terranes and accretionary history, p. 6584. In Sinha, A. K. (ed.), Basement Tectonics 13. Dordrecht, Kluwer.Google Scholar
Maslov, V. P. 1956. Fossil calcareous algae of the USSR. Trudy Geological Institute SSSR, 160:1301. (In Russian) Google Scholar
Meijer, D. J. J. 1971. Carbonate petrology of algal limestones (Lois-Ciguera Formation, upper Carboniferous, León, Spain). Leidse Geologische Mededelingen, 47:197.Google Scholar
Moshier, O. and Kirkland, B. 1993. Identification and diagenesis of a phylloid alga: Archaeolithophyllum from the Pennsylvanian Providence Limestone, western Kentucky. Journal of Sedimentary Petrology, 63:10321041.Google Scholar
Parvizi, T., Rashidi, K., and Vachard, D. 2013. Middle Permian calcareous algae and microproblematica (Dalan Formation, Dena Mountain, High Zagros, SW Iran). Facies, 59:149177.Google Scholar
Paul, V. and Alstyne, K. 1988. Chemical defense and chemical variation in some tropical Pacific species of Halimeda (Halimedaceae; Chlorophyta). Coral Reefs, 6:263269.Google Scholar
Papenfuss, G. F. 1955. Classification of the algae, p. 115224. In Kessel, E. L. (ed.), A Century of Progress in the Natural Sciences 1853–1953. California Academy of Sciences, San Francisco.Google Scholar
Pérez-Estaún, A., Bastida, F., Alonso, J. L., Marquínez, J., Aller, J., Alvarez-Marrón, J., Marcos, A., and Pulgar, J. A. 1988. A thin-skinned tectonics model for an arcuate fold and thrust belt: the Cantabrian Zone (Variscan Ibero-Armorican Arc). Tectonics, 7:517537.Google Scholar
Pray, L. C. and Wray, J. L. 1963. Porous algal facies (Pennsylvanian), Honaker Trail, San Juan Canyon, Utah, p. 204234. In Bass, R. O. (ed.), Shelf Carbonates of the Paradox Basin. Four Corners Geological Society Symposium, Fourth Field Conference Guidebook, Durango.Google Scholar
Rácz, L. 1966. Carboniferous calcareous algae and their association in the San Emiliano and Lois-Ciguera formations (Province of León, northwest Spain). Leidse Geologische Mededelingen, 31:1112.Google Scholar
Rauzer-Chernousova, D. M. and Korolyuk, I. K. 1981. K morfologii I sistematike pozdnemoskovskikh sifonovykh yuzhnogo Urala i ob ikh roli v porodoobrazovanikh [On the morphology and systematics of late Moscovian siphonal algae in the southern Urals and their significance in rock formation]. Voprosy Mikropaleontologii, 24:157170. (In Russian) Google Scholar
Reid, R. P. 1986. Discovery of Triassic phylloid algae: possible links with the Paleozoic. Canadian Journal of Earth Sciences, 23:20682071.Google Scholar
Sandberg, P. A. 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305:1922.Google Scholar
Sandberg, P. A. 1985. Aragonite cements and their occurrence in ancient limestones, p. 3357. In Schneidermann, N. and Harris, P. M. (eds.), Carbonate Cements. SEPM Special Publication 36.Google Scholar
Sawin, R. S. and West, R. R. 2005. Paleoecology of the Permian (Wolfcampian) phylloid alga Calcipatera from an in situ occurrence in Kansas, U.S.A. Current Research in Earth Sciences, Kansas Geological Survey Bulletin 251, part 1, p. 114.Google Scholar
Schlagintweit, F. 2010. Gosavisiphon gen. nov. based on Halimeda paucimedullaris Schlagintweit and Ebli, 1998, a remarkable macroalga (Udoteaceae?) from the Late Cretaceous of the Northern Calcareous Alps (Austria and Germany) with affinities to late Paleozoic and Late Triassic phylloids. Geologica Croatica, 63:2753.Google Scholar
Schupp, P. J. and Paul, V. J. 1994. Calcium carbonate and secondary metabolites in tropical seaweeds: variable effects on herbivorous fishes. Ecology, 75:11721185.Google Scholar
Senowbari-Daryan, B. and Rashidi, K. 2010. The codiacean genera Anchicodium Johnson, 1946 and Iranicodium gen. nov. from the Permian Jamal Formation of Shotori Mountains, northeast Iran. Rivista Italiana di Paleontologia e Stratigrafia, 116:321.Google Scholar
Silva, P. C. 1980. Names of classes and families of living algae: with special reference to their use in the Index Nominum Genericorum (Plantarum). Regnum Vegetabile, 103:1156.Google Scholar
Stanley, S. M. 1999. Hypercalcification: paleontology links plate tectonics and geochemistry to sedimentology. GSA Today, 9:17.Google Scholar
Stanley, S. M. 2006. Influence of seawater chemistry on biomineralization throughout Phanerozoic time: paleontological and experimental evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 232:214236.Google Scholar
Stanley, S. M. and Hardie, L. A. 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144:319.Google Scholar
Toomey, D. F. 1991 a. Late Pennsylvanian phylloid-algal bioherms, Orogrande Basin, south-central New Mexico and West Texas, p. 213220. In Barker, J. M. (ed.), Geology of the Sierra Blanca, Sacramento and Capitan Ranges. New Mexico Geological Society, 42nd Annual Field Conference, Albuquerque.Google Scholar
Toomey, D. F. 1991 b. Late Permian reefs of southern Tunisia: facies patterns and comparison with the Capitan Reef, southwestern United States. Facies, 25:119145.Google Scholar
Torres, A. M. 1995. Ivanovia tebagaensis was a cyathiform Permian codiacean membranous alga with dimorphic cortices. Journal of Paleontology, 69:381387.Google Scholar
Torres, A. M. 1997. Reconstruction of a cyathiform Eugonophyllum, Upper Pennsylvanian, Palo Pinto County, Texas. Journal of Paleontology, 71:493499.Google Scholar
Torres, A. M. 2003. Sexual reproductive structures in the green alga Ivanovia triassica . Lethaia, 36:3340.Google Scholar
Torres, A. M. and Baars, D. L. 1992 a. Anchicodium Johnson: branched or phylloid? Journal of Paleontology, 66:675677.Google Scholar
Torres, A. M. and Baars, D. L. 1992 b. Using the term utricle. Journal of Paleontology, 66:688.Google Scholar
Torres, A. M., West, R. R., and Sawin, R. S. 1992. Calcipatera cottonwoodensis, a new membranous late Paleozoic alga. Journal of Paleontology, 66:678681.Google Scholar
Torres, A. M., Christensen, A. M., Masters, T. E., and Ketcham, R. A. 2003. From CT scans of embedded Ivanovia to models using rapid prototyping. Palaeontology, 46:839843.Google Scholar
Vachard, D. and Cózar, P. 2010. An attempt of classification of the Paleozoic incertae sedis Algospongia. Revista Española de Micropaleontología, 42:129242.Google Scholar
Vachard, D. and Kabanov, P. 2007. Palaeoaplysinella gen. nov. and Likinia Ivanova and Ilkhovskii, 1973 emend., from the type Moscovian (Russia) and the algal affinities of the ancestral palaeoaplysinaceae n. comb. Geobios, 40:849860.Google Scholar
Vachard, D., Gargouri-Razgallah, S., and Chaouachi, M. C. 1989. Sur les biohermes à algues Solenoporacées et phylloïdes du Permien superieur de Tunisie (Murghabien du Djebel Tebaga) et sur les incidences de la diagenèse carbonatée sur la systématique algaire. Revue de Paléobiologie, 8:121141.Google Scholar
Vachard, D., Krainer, K., and Lucas, S. G. 2012. Pennsylvanian (late Carboniferous) calcareous microfossils from Cedro Peak (New Mexico, U.S.A.). Part 1: algae and microproblematica. Annales de Paléontologie, 98 (4):225322.Google Scholar
Vachard, D., Hauser, M., Martini, R., Zaninetti, L., Matter, A., and Peters, T. 2001. New algae and problematica of algal affinity from the Permian of the Aseelah Unit of the Batain Plain (East Oman). Geobios, 34:375404.Google Scholar
Wahlman, G. P. 2002. Upper Carboniferous–lower Permian (Bashkirian–Kungurian) mounds and reefs, p. 271338. In Kiessling, W., Flügel, E., and Golonka, J. (eds.), Phanerozoic reef patterns. SEPM Special Publication 72.Google Scholar
Weil, A. B., Gutiérrez-Alonso, G., Johnston, S. T., and Pastor-Galán, D. 2013. Kinematic constraints on buckling a lithospheric-scale orocline along the northern margin of Gondwana: a geologic synthesis. Tectonophysics, 582:2549.Google Scholar
West, R. R. 1988. Temporal changes in Carboniferous reef mound communities. Palaios, 3:152169.Google Scholar
Wray, J. L. 1968. Late Paleozoic phylloidal algal limestones in the United States. XXIII International Geological Congress, 8:113119.Google Scholar
Wray, J. L. 1977. Calcareous Algae. Developments in Paleontology and Stratigtraphy. Elsevier, Amsterdam, Oxford, New York, 185 p.Google Scholar