Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T07:57:30.623Z Has data issue: false hasContentIssue false

Recognizing sponge in Spongiostroma Gürich, 1906 from the Mississippian of Belgium

Published online by Cambridge University Press:  19 August 2022

Jeong-Hyun Lee*
Affiliation:
Department of Geological Sciences, Chungnam National University, Daejeon 34134, South Korea
Robert Riding
Affiliation:
Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA
*
*Corresponding author.

Abstract

Spongiostroma Gürich, 1906 from the Mississippian of Belgium was initially provisionally placed in Foraminifera and subsequently compared with hydrozoans and microbial carbonates. For nearly 100 years, the term spongiostromate has been widely applied to clotted microbial fabrics in stromatolites and oncolites. Examination of the type material shows that S. mæandrinum Gürich, 1906, the type species of Spongiostroma, consists of numerous juxtaposed millimetric pillow-like masses permeated by thin anastomose sparry microscopic fibers (vermiform fabric) in fine-grained groundmass, locally traversed by millimetric rounded to elongate partly sediment-filled openings. Here we interpret S. mæandrinum to be a lobate sponge composed of mammiform papillae formed by calcified spongin network and traversed by canals and spongocoel. These are typical features of calcified remains of keratosan demosponges. We redescribe and revise S. mæandrinum and interpret it as a keratosan demosponge with papilliform morphology. This upholds Gürich's (1906) initial opinion that Spongiostroma could be a sponge and supports suggestions that keratosan vermiform fabric has long been confused with microbial carbonate. Since S. mæandrinum is not a stromatolite, it is inappropriate to use the term spongiostromate to describe microbial carbonate microfabric.

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelman, J., 2007, Eozoön: debunking the dawn animal: Endeavour, v. 31, p. 9498.Google ScholarPubMed
Alberstadt, L.P., Walker, K.R., and Zurawski, R.P., 1974, Patch reefs in the Carters Limestone (Middle Ordovician) in Tennessee, and vertical zonation in Ordovician reefs: Geological Society of America Bulletin, v. 85, p. 11711182.2.0.CO;2>CrossRefGoogle Scholar
Bathurst, R.G.C., 1976, Carbonate Sediments and their Diagenesis: Developments in Sedimentology, v. 12, 658 p.Google Scholar
Bosence, D., and Gallois, A., 2022, How do thrombolites form? Multiphase construction of lacustrine microbialites, Purbeck Limestone Group, (Jurassic), Dorset, UK: Sedimentology, v. 69, p. 914953.CrossRefGoogle Scholar
Brunton, F.R., and Dixon, O.A., 1994, Siliceous sponge–microbe biotic associations and their recurrence through the Phanerozoic as reef mound constructors: Palaios, v. 9, p. 370387.CrossRefGoogle Scholar
Cayeux, L., 1935, Les Roches Sédimentaires de France: Roches Carbonatées: Paris, Masson et Cie, 463 p.Google Scholar
Chafetz, H.S., 1986, Marine peloids: a product of bacterially induced precipitation of calcite: Journal of Sedimentary Petrology, v. 56, p. 812817.Google Scholar
Claussen, A.L., Munnecke, A., and Ernst, A., 2022, Bryozoan-rich stromatolites (bryostromatolites) from the Silurian of Gotland and their relation to climate-related perturbations of the global carbon cycle: Sedimentology, v. 69, p. 162198.CrossRefGoogle Scholar
Dawson, J.W., 1865, On the structure of certain organic remains in the Laurentian limestones of Canada: Quarterly Journal of the Geological Society of London, v. 21, p. 5159.Google Scholar
Dawson, J.W., 1876, Notes on the occurrence of Eozoön canadense at Côte St. Pierre: Quarterly Journal of the Geological Society of London, v. 32, p. 6675.CrossRefGoogle Scholar
Desrochers, A., and James, N.P., 1989, Middle Ordovician (Chazyan) bioherms and biostromes of the Mingan Islands, Quebec, in Geldsetzer, H.H.J., James, N.P., and Tebbutt, G.E., eds., Reefs: Canada and Adjacent Areas: Canadian Society of Petroleum Geologists Memoir 13, p. 183191.Google Scholar
Fagerstrom, J.A., 1987, The Evolution of Reef Communities: New York, Wiley and Sons, 600 p.Google Scholar
Fenton, C.L., and Fenton, M.A., 1933, Algal reefs or bioherms in the Belt Series of Montana: Bulletin of the Geological Society of America, v. 44, p. 11351142.Google Scholar
Fenton, C.L., and Fenton, M.A., 1937, Cambrian calcareous algae from Pennsylvania: The American Midland Naturalist, v. 18, p. 435441.Google Scholar
Flügel, E., 2004, Microfacies of Carbonate Rocks: Analysis, Interpretation and Application: Berlin, Springer, 976 p.Google Scholar
Friesenbichler, E., Richoz, S., Baud, A., Krystyn, L., Sahakyan, L., Vardanyan, S., Peckmann, J., Reitner, J., and Heindel, K., 2018, Sponge–microbial build-ups from the lowermost Triassic Chanakhchi section in southern Armenia: microfacies and stable carbon isotopes: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 490, p. 653672.CrossRefGoogle Scholar
Galloway, J.J., and St. Jean, J.J., 1955, The type of the stromatoporoid species Stromatocerium rugosum Hall: American Museum Novitates, v. 1728, p. 111.Google Scholar
Garwood, E.J., 1914, Some new rock-building organisms from the lower Carboniferous beds of Westmorland: Geological Magazine, v. 1, p. 265271.CrossRefGoogle Scholar
Grey, K., and Awramik, S.M., 2020, Handbook for the Study and Description of Microbialites: Geological Survey of Western Australia Bulletin, v. 147, 278 p.Google Scholar
Groessens, E., 1989, A history of the subdivision of the Dinantian subsystem: Bulletin de la Société belge De Géologie, v. 98, p. 183195.Google Scholar
Gürich, G., 1906, Les spongiostromides du Viséen de la Province de Namur: Musée royal d'histoire naturelle de Belgique, Mémoires, v. 3, p. 155.Google Scholar
Gürich, G., 1907, Spongiostromidae – eine neue Familie krustenbildender Organismen aus dem Kohlenkalk von Belgien: Neues Jahrbuch für Geologie und Paläontologie, v. 1, p. 131138.Google Scholar
Heindel, K., et al. , 2018, The formation of microbial–metazoan bioherms and biostromes following the latest Permian mass extinction: Gondwana Research, v. 61, p. 187202.CrossRefGoogle Scholar
Hofmann, H.J., 1971, Precambrian Fossils, Pseudofossils, and Problematica in Canada: Geological Survey of Canada Bulletin, v. 189, 146 p.Google Scholar
Hofmann, H.J., 1978, New stromatolites from the Aphebian Mistassini Group, Quebec: Canadian Journal of Earth Sciences, v. 15, p. 571585.CrossRefGoogle Scholar
Hong, J., Choh, S.-J., and Lee, D.-J., 2014, Tales from the crypt: early adaptation of cryptobiontic sessile metazoans: Palaios, v. 29, p. 95100.Google Scholar
Johnson, J.H., 1942, Permian lime-secreting algae from the Guadalupe Mountains, New Mexico: Bulletin of the Geological Society of America, v. 53, p. 195226.Google Scholar
Johnson, J.H., 1946, Lime-secreting algae from the Pennsylvanian and Permian of Kansas: Bulletin of the Geological Society of America, v. 57, p. 10871120.CrossRefGoogle Scholar
Johnson, J.H., 1951, Permian calcareous algae from the Apache Mountains, Texas: Journal of Paleontology, v. 25, p. 2130.Google Scholar
Johnson, J.H., 1961, Limestone-Building Algae and Algal Limestones: Golden, Colorado School of Mines, 297 p.Google Scholar
Johnson, J.H., 1963, Pennsylvanian and Permian algae: Quarterly of the Colorado School of Mines, v. 58, p. 1211.Google Scholar
Kaisin, F., 1925, Les calcaires oolithiques de l’étage viséen: Annales de la Société scientifique de Bruxelles, v. 44, p. 362365.Google Scholar
Kalkowsky, E., 1908, Oolith und Stromatolith im norddeutschen Buntsandstein: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 60, p. 68125.Google Scholar
Kaźmierczak, J., 1980, Stromatoporoid stromatolites: new insight into evolution of cyanobacteria: Acta Palaeontologica Polonica, v. 25, p. 243251.Google Scholar
Keller, M., and Flügel, E., 1996, Early Ordovician reefs from Argentina: stromatoporoid vs stromatolite origin: Facies, v. 34, p. 177192.Google Scholar
Kershaw, S., Li, Q., and Li, Y., 2021, Addressing a Phanerozoic carbonate facies conundrum—sponges or clotted micrite? Evidence from early Silurian reefs, South China Block: The Sedimentary Record, v. 19, p. 310.CrossRefGoogle Scholar
Klappa, C.F., and James, N.P., 1980, Small lithistid sponge bioherms, early Middle Ordovician Table Head Group, western Newfoundland: Bulletin of Canadian Petroleum Geology, v. 28, p. 425451.Google Scholar
Lee, J.-H., and Hong, J., 2019, Sedimentologic and paleoecologic implications for keratose-like sponges in geologic records: Journal of the Geological Society of Korea, v. 55, p. 735748. [in Korean with English abstract]Google Scholar
Lee, J.-H., and Riding, R., 2018, Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs: Earth-Science Reviews, v. 181, p. 98121.CrossRefGoogle Scholar
Lee, J.-H., and Riding, R., 2021a, The ‘classic stromatolite’ Cryptozoön is a keratose sponge–microbial consortium: Geobiology, v. 19, p. 189198.CrossRefGoogle ScholarPubMed
Lee, J.-H., and Riding, R., 2021b, Keratolite–stromatolite consortia mimic domical and branched columnar stromatolites: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 571, n. 110288, https://doi.org/10.1016/j.palaeo.2021.110288Google Scholar
Lee, J.-H., Chen, J., Choh, S.-J., Lee, D.-J., Han, Z., and Chough, S.K., 2014, Furongian (late Cambrian) sponge–microbial maze-like reefs in the North China Platform: Palaios, v. 29, p. 2737.CrossRefGoogle Scholar
Lee, J.-H., Hong, J., Lee, D.-J., and Choh, S.-J., 2016, A new Middle Ordovician bivalve–siliceous sponge–microbe reef-building consortium from North China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 457, p. 2330.Google Scholar
Lee, J.-H., Dattilo, B.F., Mrozek, S., Miller, J.F., and Riding, R., 2019, Lithistid sponge–microbial reefs, Nevada, USA: filling the late Cambrian ‘reef gap’: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 520, p. 251262.Google Scholar
Lee, J.-H., Cho, S.H., Jung, D.Y., Choh, S.-J., and Lee, D.-J., 2021, Ribbon rocks revisited: the upper Cambrian (Furongian) Hwajeol Formation, Taebaek Group, Korea: Facies, v. 67, p. 19.CrossRefGoogle Scholar
Lee, M., Elias, R.J., Choh, S.-J., and Lee, D.-J., 2019, Disorientation of corals in Late Ordovician lime mudstone: a case for ephemeral, biodegradable substrate?: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 520, p. 5565.Google Scholar
Li, Q., Li, Y., Zhang, Y., and Munnecke, A., 2017, Dissecting Calathium–microbial frameworks: the significance of calathids for the Middle Ordovician reefs in the Tarim Basin, northwestern China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 474, p. 6678.Google Scholar
Linnaeus, C., 1759, Systema Naturæ per Regna Tria Naturæ, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis, Volume 2 (tenth edition): Holmiae, Laurentii Salvii, 823 p.Google Scholar
Liu, B., Rigby, J.K., and Zhu, Z., 2003, Middle Ordovician lithistid sponges from the Bachu–Kalpin Area, Xinjiang, Northwestern China: Journal of Paleontology, v. 77, p. 430441.Google Scholar
Luo, C., 2015, “Keratose” sponge fossils and microbialites: a geobiological contribution to the understanding of metazoan origin [Ph.D. thesis]: Göttingen, Georg-August-Universität Göttingen, 151 p.Google Scholar
Luo, C., and Reitner, J., 2014, First report of fossil “keratose” demosponges in Phanerozoic carbonates: preservation and 3-D reconstruction: Naturwissenschaften, v. 101, p. 467477.Google ScholarPubMed
Luo, C., and Reitner, J., 2016, ‘Stromatolites’ built by sponges and microbes—a new type of Phanerozoic bioconstruction: Lethaia, v. 49, p. 555570.CrossRefGoogle Scholar
Luo, C., Zhao, F., and Zeng, H., 2020, The first report of a vauxiid sponge from the Cambrian Chengjiang Biota: Journal of Paleontology, v. 94, p. 2833.CrossRefGoogle Scholar
Luo, C., Yang, A., Zhuravlev, A.Y., and Reitner, J., 2021, Vauxiids as descendants of archaeocyaths: a hypothesis: Lethaia, v. 54, p. 700710.Google Scholar
Maldonado, M., and Young, C.M., 1998, Limits on the bathymetric distribution of keratose sponges: a field test in deep water: Marine Ecology Progress Series, v. 174, p. 123139.Google Scholar
Martindale, R.C., Corsetti, F.A., James, N.P., and Bottjer, D.J., 2015, Paleogeographic trends in Late Triassic reef ecology from northeastern Panthalassa: Earth-Science Reviews, v. 142, p. 1837.CrossRefGoogle Scholar
Minchin, E.A., 1900, Sponges, in Lankester, E.R., ed., A Treatise on Zoology, Part II, The Porifera and Coelenterata: London, A&C Black, p. 1178.Google Scholar
Monty, C., 1977, Evolving concepts on the nature and the ecological significance of stromatolites, in Flügel, E., ed., Fossil Algae: Recent Results and Developments: Berlin, Springer, p. 1535.Google Scholar
Monty, C., 1981, Phanerozoic Stromatolites: Berlin, Springer-Verlag, 252 p.Google Scholar
Neuweiler, F., Reitner, J., and Monty, C., 1997, Biosedimentology of microbial buildups IGCP project no. 380 proceedings of 2nd meeting, Göttingen/Germany 1996: Facies, v. 36, p. 195284.CrossRefGoogle Scholar
Neuweiler, F., Kershaw, S., Boulvain, F., Matysik, M., Sendino, C., McMenamin, M., and Wood, R., (online preprint), Keratose sponges in ancient carbonates—a problem of interpretation: bioRxiv, https://doi.org/10.1101/2022.03.23.485445CrossRefGoogle Scholar
O'Brien, C.F., 1970, Eozoön canadense “the dawn animal of Canada”: Isis, v. 61, p. 206223.Google Scholar
Park, J., Lee, J.-H., Hong, J., Choh, S.-J., Lee, D.-C., and Lee, D.-J., 2015, An Upper Ordovician sponge-bearing micritic limestone and implication for early Palaeozoic carbonate successions: Sedimentary Geology, v. 319, p. 124133.CrossRefGoogle Scholar
Park, J., Lee, J.-H., Hong, J., Choh, S.-J., Lee, D.-C., and Lee, D.-J., 2017, Crouching shells, hidden sponges: unusual Late Ordovician cavities containing sponges: Sedimentary Geology, v. 347, p. 19.Google Scholar
Pei, Y., Duda, J.P., Schönig, J., Luo, C., and Reitner, J., 2021, Late Anisian microbe–metazoan build-ups in the Germanic Basin: aftermath of the Permian–Triassic crisis: Lethaia, v. 54, p. 823844.Google Scholar
Pei, Y., Hagdorn, H., Voigt, T., Duda, J.-P., and Reitner, J., 2022, Palaeoecological implications of Lower–Middle Triassic stromatolites and microbe–metazoan build-ups in the Germanic Basin: insights into the aftermath of the Permian–Triassic crisis: Geosciences, v. 12, p. 133.CrossRefGoogle Scholar
Pia, J., 1927, Thallophyta, in Hirmer, M., ed., Handbuch der Paläobotanik, Band 1: Thallophyta - Bryophyta - Pteridophyta: Munich, Oldenbourg Wissenschaftsverlag, p. 31136.Google Scholar
Pitcher, M., 1964, Evolution of Chazyan (Ordovician) reefs of eastern United States and Canada: Bulletin of Canadian Petroleum Geology, v. 12, p. 632691.Google Scholar
Pratt, B.R., 1982, Stromatolitic framework of carbonate mud-mounds: Journal of Sedimentary Petrology, v. 52, p. 12031227.Google Scholar
Reitner, J., et al. , 1995, Mud mounds: a polygenetic spectrum of fine-grained carbonate buildups: Facies, v. 32, p. 169.Google Scholar
Reitner, J., Hühne, C., and Thiel, V., 2001, Porifera-rich mud mounds and microbialites as indicators of environmental changes within the Devonian/lower Carboniferous critical interval: Terra Nostra, v. 4, p. 6065.Google Scholar
Riding, R., 2000, Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms: Sedimentology, v. 47, p. 179214.CrossRefGoogle Scholar
Riding, R., and Tomás, S., 2006, Stromatolite reef crusts, Early Cretaceous, Spain: bacterial origin of in situ-precipitated peloid microspar?: Sedimentology, v. 53, p. 2334.CrossRefGoogle Scholar
Rigby, J.K., 1986, Sponges of the Burgess Shale (middle Cambrian), British Columbia: Paleontographica Canadiana, v. 2, p. 1105.Google Scholar
Rothpletz, A., 1908, Uber Algen und Hydrozoen im Silur von Gotland und Oesel: Kungliga Svenska Vetenskapsakademiens Handlingar, v. 43, p. 123.Google Scholar
Rothpletz, A., 1913, Über die Kalkalgen, Spongiostromen und einige andere Fossilien aus dem Obersilur Gotland: Sveriges Geologiska Undersökning Series C a, v. 10, 57 p.Google Scholar
Semikhatov, M.A., and Raaben, M.E., 2000, Proterozoic stromatolite taxonomy and biostratigraphy, in Riding, R.E., and Awramik, S.M., eds., Microbial Sediments: Berlin, Springer, p. 295306.CrossRefGoogle Scholar
Sollas, W.J., 1885, A Classification of the Sponges: Annals and Magazine of Natural History, v. 16, 395 p.CrossRefGoogle Scholar
Stearn, C.W., 1972, The relationship of the stromatoporoids to the sclerosponges: Lethaia, v. 5, p. 369388.Google Scholar
Stearn, C.W., 2015a, Internal morphology of the Paleozoic Stromatoporoidea, in Stearn, C.W., ed., Treatise on Invertebrate Paleontology, Part E, Porifera, Revised, Hypercalcified Porifera, Volumes 4 and 5: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. 487520.Google Scholar
Stearn, C.W., 2015b, Morphologic affinities of the Paleozoic Stromatoporoidea to other fossil and recent groups, in Stearn, C.W., ed., Treatise on Invertebrate Paleontology, Part E, Porifera, Revised, Hypercalcified Porifera, Volumes 4 and 5: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. 543549.Google Scholar
Stearn, C.W., Webby, B.D., Nestor, H., and Stock, C.W., 1999, Revised classification and terminology of Palaeozoic stromatoporoids: Acta Palaeontologica Polonica, v. 44, p. 170.Google Scholar
Stock, C.W., and Sandberg, C.A., 2019, Latest Devonian (Famennian, expansa Zone) conodonts and sponge–microbe symbionts in Pinyon Peak Limestone, Star Range, southwestern Utah, lead to reevaluation of global Dasberg Event: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 534, n. 109271, https://doi.org/10.1016/j.palaeo.2019.109271CrossRefGoogle Scholar
Turner, E.C., 2021, Possible poriferan body fossils in early Neoproterozoic microbial reefs: Nature, v. 596, p. 8791.CrossRefGoogle ScholarPubMed
Twenhofel, W.H., 1919, Pre-Cambrian and Carboniferous algal deposits: American Journal of Science, v. 48, p. 339352.Google Scholar
Vennin, E., et al. , 2019, The lacustrine microbial carbonate factory of the successive Lake Bonneville and Great Salt Lake, Utah, USA: Sedimentology, v. 66, p. 165204.Google Scholar
Walcott, C.D., 1920, Cambrian geology and paleontology IV No 6. Middle Cambrian Spongiae: Smithsonian Miscellaneous Collections, v. 67, p. 261364.Google Scholar
Walter, M.R., 1972, Stromatolites and the Biostratigraphy of the Australian Precambrian and Cambrian: The Palaeontological Association of London, Special Papers in Palaeontology, v. 11, 256 p.Google Scholar
Wei, F., Zhao, Y., Chen, A., Hou, X., and Cong, P., 2021, New vauxiid sponges from the Chengjiang Biota and their evolutionary significance: Journal of the Geological Society, v. 178, n. jgs2020-162, https://doi.org/10.1144/jgs2020-162CrossRefGoogle Scholar
WILDLIFE GmbH, 2002, Bath sponge (Spongia officinalis) in reef. https://www.alamy.com/stock-photo-bath-sponge-spongia-officinalis-in-reef-20605402.html [May 2022]Google Scholar
Wolniewicz, P., 2009, Late Famennian stromatoporoids from Dębnik Anticline, southern Poland: Acta Palaeontologica Polonica, v. 54, p. 337350.CrossRefGoogle Scholar
Wood, R., 1990, Reef-building sponges: American Scientist, v. 78, p. 224235.Google Scholar
Wörheide, G., 2008, A hypercalcified sponge with soft relatives: Vaceletia is a keratose demosponge: Molecular Phylogenetics and Evolution, v. 47, p. 433438.CrossRefGoogle ScholarPubMed
Wörheide, G., Dohrmann, M., Erpenbeck, D., Larroux, C., Maldonado, M., Voigt, O., Borchiellini, C., and Lavrov, D.V., 2012, Deep phylogeny and evolution of sponges (phylum Porifera), in Becerro, M.A., Uriz, M.J., Maldonado, M., and Turon, X., eds., Advances in Marine Biology: Amsterdam, Academic Press, p. 178.Google Scholar
Wu, S., Chen, Z.-Q., Su, C., Fang, Y., and Yang, H., 2022, Keratose sponge fabrics from the lowermost Triassic microbialites in South China: geobiologic features and Phanerozoic evolution: Global and Planetary Change, v. 211, n. 103787, https://doi.org/10.1016/j.gloplacha.2022.103787Google Scholar
Yang, X., Zhao, Y., Babcock, L.E., and Peng, J.I.N., 2017, A new vauxiid sponge from the Kaili Biota (Cambrian Stage 5), Guizhou, South China: Geological Magazine, v. 154, p. 13341343.CrossRefGoogle Scholar