Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T13:30:51.920Z Has data issue: false hasContentIssue false

Recent hexactinosidan sponge reefs (silicate mounds) off British Columbia, Canada: Frame-building processes

Published online by Cambridge University Press:  20 May 2016

Manfred Krautter
Affiliation:
Institut für Geologie und Paläontologie, Universität Stuttgart, Herdweg 51, D-70174 Stuttgart, Germany,
Kim W. Conway
Affiliation:
Geological Survey of Canada–Pacific, Sidney, British Columbia V8L 4B2, Canada
J. Vaughn Barrie
Affiliation:
Geological Survey of Canada–Pacific, Sidney, British Columbia V8L 4B2, Canada

Abstract

Hexactinosidan sponges are important reef-building organisms in Earth history as they are able to create a three-dimensional reef framework and thereby form topographic relief comparable to that produced by scleractinian corals. Study of modern hexactinosidan sponge skeletons from water depths of 165–240 m on the continental shelf off British Columbia, Canada, demonstrate the hitherto undescribed frame-building process that leads to the formation of large and so far unique siliceous sponge reefs in this area. The fundamentals of the frame-building process are based on the production of siliceous envelopes around spicules of dead hexactinosidan sponges. In addition to the development of a three-dimensional reef framework, mound growth is supported by the current baffling effect of the sponges. Fine-grained siliciclastic suspended sediment is trapped and deposited within the gaps in the sponge skeletons and in voids in the reef surface preventing the framework from collapsing as the reef grows.

Analogous but tropical examples from the Lower Jurassic of Portugal show that the frame-building potential of hexactinosidan and other siliceous sponges has existed, substantially unchanged, for more than 180 million years. In contrast to well-known fossil mud mounds of various geologic ages, in which the in situ precipitation of automicrite via microbial processes plays a major role, the matrix of the hexactinosidan sponge mounds of British Columbia consists exclusively of baffled fine-grained siliciclastics; automicrite is absent. Existing mud mound classification schemes do not encompass these depositional characteristics, therefore this new type of mound is consequently here classified as a silicate mound.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrie, J. V., and Conway, K. W. 1999. Late Quaternary glaciation and postglacial stratigraphy of the northern Pacific margin of Canada. Quaternary Research, 51:113123.Google Scholar
Barrie, J. V., and Conway, K. W. 2002. Sea level and glacial sedimentation on the Pacific margin of Canada, p. 181194. In Dowdeswell, J. and O'Cofaigh, C. (eds.), Glacier-influenced Sedimentation on High-latitude Continental Margins. Geological Society of London, special publication, 203.Google Scholar
Boury-Esnault, N., and Vacelet, J. 1994. Preliminary studies on the organization and development of a hexactinellid sponge from a Mediterranean cave, Oopsacas minuta, p. 407416. In van Soest, R. W. M., van Kempen, T. M. G., and Braekman, J. (eds.), Sponges in Time and Space. Balkema, Rotterdam.Google Scholar
Bowerbank, J. S. 1862. On the anatomy and physiology of the spongiidae. Pt. III. On the generic characters, the specific characters, and on the method of examination. Philosophical Transactions of the Royal Society, 152(2):10871135.Google Scholar
Brunton, F. R., and Dixon, O. A. 1994. Siliceous sponge-microbe biotic associations and their recurrence through the Phanerozoic as reef mound constructors. Palaios, 9:370387.CrossRefGoogle Scholar
Conway, K. W., Barrie, J. V., Austin, W. C., and Luternauer, J. L. 1991. Holocene sponge bioherms on the western Canadian continental shelf. Continental Shelf Research, 11:771790.Google Scholar
Conway, K. W., Krautter, M., Barrie, J. V., and Neuweiler, M. 2001. Hexactinellid sponge reefs on the Canadian continental shelf: A unique “living fossil.” Geoscience Canada, 28:6572.Google Scholar
Dayton, P. K., Robiliard, G. A., Paine, R. T., and Dayton, L. B. 1974. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecological Monographs, 44:105128.Google Scholar
Duarte, L. V. 1997. Facies analysis and sequential evolution of the Toarcian–Lower Aalenian series in the Lusitanian Basin (Portugal). Comunicações do Instituto Geológico e Mineiro, 83:6594.Google Scholar
Duarte, L. V., Krautter, M., and Soares, A. F. 2001. Bioconstructions à spongiaires silicieux dans le Lias terminal du Bassin lusitanien (Portugal): Stratigraphie, sédimentologie et signification paléogéographique. Bulletin de la Societé géologique de France, 172:637647.CrossRefGoogle Scholar
Gray, J. E. 1858. On Aphrocallistes, a new genus of spongiadae from Malacca. Proceedings of the Zoological Society of London, 26:114115.Google Scholar
Hartman, W. D. 1981. Form and distribution of silica in sponges, p. 453493. In Simpson, T. S. and Volcani, B. E. (eds.), Silicon and Siliceous Structures in Biological Systems. Springer, New York.Google Scholar
Henrich, R., Hartmann, M., Reitner, J., Schäfer, P., Freiwald, A., Steinmetz, S., Dietrich, P., and Thiede, J. 1992. Facies belts and communities of the Arctic Vesterisbanken Seamount (Central Greenland Sea). Facies, 27:71104.Google Scholar
Hérenger, L. 1943–1944. Spongiaires silicieux du Crétacé du sud-est de la France. Travaux du Laboratoire de Géologie de la Faculté des Sciences de l'Université de Grenoble, 24:79110.Google Scholar
Ijima, I. 1927. The Hexactinellida of the Siboga Expedition, p. iiii, 1–383. In Weber, M. (ed.), Siboga-Expeditie. Uitkomsten op zoölogisch, botanisch, oceanographisch en geologisch gebied verzameld in Niederlandsch Oost-Indië 1899–1900 aan boord H.M. “Siboga” onder commando van Luitenant ter zee le kl. G. F. Tydeman, 106 (Monographie VI).Google Scholar
James, N. P., and Bourque, P.-A. 1992. Reefs and mounds, p. 323347. In Walker, R. G., and James, N. P. (eds.), Facies Models: Response to Sea Level Change. Geological Association of Canada, St. Johns.Google Scholar
Keupp, H., Reitner, J., and Salomon, D. 1989. Kieselschwämme (Hexactinellida und “Lithistida”) aus den Cipit-Kalken der Cassianer Schichten (Karn, Südtirol). Berliner geowissenschaftliche Abhandlungen, A, 106:221241.Google Scholar
Krautter, M. 1997. Aspekte zur Paläökologie postpaläozoischer Kieselschwämme. Profil, 11:199324.Google Scholar
Krautter, M. 2002. Fossil Hexactinellida: An overview, p. 12111223. In Hooper, J. and van Soest, R. (eds.), Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic/Plenum, New York.Google Scholar
Krautter, M., Conway, K. W., Barrie, J. V., and Neuweiler, M. 2001. Discovery of a “living Dinosaur”: Globally unique modern hexactinellid sponge reefs off British Columbia, Canada. Facies, 44:265282.Google Scholar
Leinfelder, R. R., Werner, W., Nose, M., Schmid, D. U., Krautter, M., Laternser, R., Tacacs, M., and Hartmann, D. 1996. Paleoecology, growth parameters and dynamics of coral, sponge and microbolite reefs from the Late Jurassic, p. 227248. In Reitner, J., Neuweiler, F., and Gunkel, F. (eds.), Global and Regional Controls on Biogenic Sedimentation. I. Reef evolution. Research reports. Göttinger Arbeiten zur Geologie und Paläontologie, Sb2.Google Scholar
Lévi, C., Barton, J. L., Guillemet, C., Le Bras, E., and Lehuede, P. 1989. A remarkably strong natural glassy rod: The anchoring spicule of the Monoraphis sponge. Journal of Materials Science Letters, 8:337339.CrossRefGoogle Scholar
Leys, S. P. 2003. Comperative study of spiculogenesis in demosponge and hexactinellid larvae. Microscopy Research and Technique, 62:300311.Google Scholar
Mehl, D. 1992. Die Entwicklung der Hexactinellida seit dem Mesozoikum: Paläobiologie, Phylogenie und Evolutionsökologie. Berliner geowissenschaftliche Abhandlungen, E, 2:1164.Google Scholar
Mehl, D., and Hauschke, N. 1995. Hyalonema cretacea n. sp., erste körperlich erhaltene Amphidiscophora (Porifera, Hexactinellida) aus dem Mesozoikum. Geologie und Paläontologie in Westfalen, 38:8997.Google Scholar
Moret, L. 1926. Contribution à l'étude spongiaires silicieux de Crétacé Supérieur franços. Mémoires de la Société géologique de France, 3:121338.Google Scholar
Müller, W. 1978. Beobachtungen zur Ökologie von Kieselspongien aus dem Weissen Jura der Schwäbischen Alb. Stuttgarter Beiträge zur Naturkunde, B, 37:115.Google Scholar
Nestler, H. 1961. Spongien aus der weißen Schreibkreide (Unt. Maastricht) der Insel Rügen (Ostsee). Paläontologische Abhandlungen, 1(1):170.Google Scholar
Neuweiler, M. 2000. Untersuchungen an Kieselnadeln rezenter hexactinellider Schwämme. Unpublished , , 166 p.Google Scholar
Okada, Y. 1928. On the development of a Hexactinellid sponge, Farrea sollasi. Journal of the Faculty of Science, Imperial University of Tokyo, sect. 4, Zoology, 2:127.Google Scholar
Olivier, N., Hantzpergue, P., Gaillard, C., Pittet, B., Leinfelder, R. R., Schmid, D. U., and Werner, W. 2003. Microbialite morphology, structure and growth: A model of the Upper Jurassic reefs of the Chay Peninsula (western France). Palaeogeography, Palaeoclimatology, Palaeoecology, 193:383404.CrossRefGoogle Scholar
Pratt, B. R. 1995. The origin, biota and evolution of deep-water mud-mounds, p. 49123. In Monty, C. L. V., Bosence, D. W. J., Bridges, P. H., and Pratt, B. R. (eds.), Carbonate mud-mounds: Their origin and evolution. International Association of Sedimentologists, special publication, 23.Google Scholar
Regnard, C.-H., and Moret, L. 1926. Notice sur les spongiaires cénomaniens de Coulonges-Les-Sablons (Orne). Historique et Hexactinellides. Bulletin de la Société géologique de France, 25:469488.Google Scholar
Reiswig, H. M. 1971. The axial symmetry of sponge spicules and its phylogenetic significance. Cahiers de Biologie Marine, 12:505514.Google Scholar
Reiswig, H. M. 2002. Class Hexactinellida Schmidt, 1870, p. 12011202. In Hooper, J. N. A. and van Soest, R. W. M. (eds.), Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic/Plenum, New York.Google Scholar
Reitner, J., and Mehl, D. 1996. Monophyly of the Porifera. Verhandlungen des naturwissenschaftlichen Vereins Hamburg, 36:532.Google Scholar
Reitner, J., and Schumann-Kindel, G. 1997. Pyrite in mineralized sponge tissue—Product of sulfate reducing sponge related bacteria?, p. 272276. In Neuweiler, F., Reitner, J., and Monty, C. (eds.), Biosedimentology of Microbial Buildups. IGCP Project No. 380, Proceedings of 2nd Meeting, Göttingen/Germany 1996. Facies, 36.Google Scholar
Reitner, J., Gautret, P., Marin, F., Neuweiler, F., and Cuif, J. P. 1995. Automicrites in a modern microbialite-formation model via organic matrices (Lizard Island, Great Barrier Reef, Australia). Bulletin de l'Institut d'Océanographie de Monaco, 14:237263.Google Scholar
Rigby, J. K., Racki, G., and Wrzolek, T. 1981. Occurrence of dictyid hexactinellid sponges in the Upper Devonian of the Holy Cross Mts. Acta Geologica Polonica, 31:163168.Google Scholar
Rigby, J. K., Pisera, A., Wrzolek, T., and Racki, G. 2001. Upper Devonian sponges from the Holy Cross Mountains, central Poland. Palaeontology, 44:447488.Google Scholar
Schlager, W. 2003. Benthic carbonate factories of the Phanerozoic. International Journal of Earth Science, 92:445464.CrossRefGoogle Scholar
Schmid, D. U. 1996. Marine Mikrobolithe und Mikroinkrustierer aus dem Oberjura. Profil, 9:101251.Google Scholar
Schmid, D. U., Leinfelder, R., and Nose, M. 2001. Growth dynamics and ecology of Upper Jurassic mounds, with comparisons to Mid-Palaeozoic mounds. Sedimentary Geology, 145:343376.CrossRefGoogle Scholar
Schulze, F. E. 1886. Über den Bau und das System der Hexactinelliden. Abhandlungen der Königlichen Preussischen Akademie der Wissenschaften zu Berlin (Physikalisch-Mathematische Classe), 1886:397.Google Scholar
Schulze, F. E. 1904. Hexactinellida. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer “Valdivia” 1898–1899, 4:1266, 52 pls.Google Scholar
Schulze, F. E., and Kirkpatrick, R. 1910. Preliminary notice on Hexactinellida of the Gauss-Expedition. Zoologischer Anzeiger, 35:293302.Google Scholar
Van Wagoner, N. A., Mudie, P. J., Cole, F. E., and Daborn, G. 1989. Siliceous sponge communities, biological zonation, and Recent sea-level change on the Arctic margin: Ice Island results. Canadian Journal of Earth Sciences, 26:23412355.Google Scholar
Wagenplast, P. 1972. Ökologische Untersuchungen der Fauna aus Bank- und Schwammfazies des Weissen Jura der Schwäbischen Alb. Arbeiten aus dem Institut für Geologie und Paläontologie der Universität Stuttgart, Neue Folge, 67:199.Google Scholar
Wendt, J., Wu, X., and Reinhardt, J. W. 1989. Deep-water hexactinellid sponge mounds from the Upper Triassic of northern Sichuan (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 76:1729.Google Scholar
Wood, R. 1999. Reef Evolution. University Press, Oxford, 414 p.Google Scholar
Woodworth-Lynas, C. M. T., Josenhans, H. W., Barrie, J. V., Lewis, C. F. M., and Parrott, D. R. 1991. The physical process of seabed disturbance during iceberg grounding and scouring. Continental Shelf Research, 11:939961.Google Scholar
Wu, X. 1989. Schwamm-Bioherme aus dem Karn (Obertrias) des nord-westlichen Sichuan-Beckens, China: Stratigraphie, Fazies und Paläoökologie. Facies, 21:171185.Google Scholar