Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T13:00:41.696Z Has data issue: false hasContentIssue false

Proliferation of Oberhauserellidae during the recovery following the Late Triassic extinction: paleoecological implications

Published online by Cambridge University Press:  14 July 2015

Marie-Emilie Clémence
Affiliation:
Plymouth University, School of Geography, Earth and Environmental Sciences, Drake Circus, Plymouth, Devon, PL4 8AA, UK, ; and
Malcolm B. Hart
Affiliation:
Plymouth University, School of Geography, Earth and Environmental Sciences, Drake Circus, Plymouth, Devon, PL4 8AA, UK, ; and

Abstract

A paleoecological study of benthic foraminifera through the lower Hettangian in the Doniford Bay section (west Somerset, U.K.) is presented. The sudden and brief appearance of Oberhauserellidae in the aftermath of the Late Triassic extinction is defined as a proxy for environmental perturbations indicating severe biotic stress conditions. Oberhauserellidae, associated with the genus Reinholdella are distinguished from other species by a high abundance, low diversity, high dominance and an abnormally small size. This suite of characters mimics an opportunistic behavior where these r-strategists and grazer feeders maximize their full ecological potential at a time of low-oxygen conditions on the sea-floor and a high food supply: both of which appear to be the main triggers of this paleoecological change. The disappearance of these opportunistic benthic foraminifera coincides with the appearance of infaunal, low-oxygen-tolerant generalists, and the restoration of stable environmental conditions (e.g., well-stratified water mass and oligotrophic conditions), characterizing the initial stages of recovery following the Late Triassic extinction event.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P. A. and Wright, V. P. 2005. Switching off the carbonate factory: a-tidality, stratification and brackish wedges in epeiric seas. Sedimentary Geology, 179:175184.CrossRefGoogle Scholar
Araújo, H. A. B. and Machado, A. J. 2008. Benthic Foraminifera associated with the South Bahia Coral Reefs, Brazil. Journal of Foraminiferal Research, 38:2338.CrossRefGoogle Scholar
Barras, C. G. and Twitchett, R. J. 2007. Response of the marine infauna to Triassic/Jurassic environmental change: ichnological data from southern England. Palaeogeography, Palaeoclimatology, Palaeoecology, 244:223241.CrossRefGoogle Scholar
Bartolini, A., Nocchi, M., Baldanza, A., and Parisi, G. 1992. Benthic life during the early Toarcian Anoxic Event in the Southwestern Tethyan Umbria-Marche Basin, Central Italy. Studies in benthic Foraminifers Benthos'90, Tokai University Press, Sendai, 15p.Google Scholar
Basov, I. A. 1979. Ecology of benthic foraminifera in the upwelling zone near south-west Africa. Voporsy Mikropaleontologii, 22:135146.Google Scholar
Bloos, G. and Page, K. N. 2000. The basal Jurassic ammonite succession in the North-West European province—review and new results, p. 2740. InHall, R. L. and Smith, P. L.(eds.), Advances in Jurassic Research 2000. TransTech, Zürich.Google Scholar
Bornemann, J. G. 1854. Uber die Liasformation in der Ungebung von Göttingen und ihre organischen Einschlüsse. Dissertation, Berlin.Google Scholar
Boudagher-Fadel, M. K. 2012. Biostratigraphic and geological significance of planktonic foraminifera. Developments in Paleontology and Stratigraphy, 22:4765.CrossRefGoogle Scholar
Boutakiout, M. and Elmi, S. 1996. Tectonic and eustatic controls during the Lower and Middle Jurassic of the South Rif Ridge (Morocco) and their importance for the foraminifera-communities, p. 237247. InHall, R. L. and Smith, P. L.(eds.), Advances in Jurassic Research 2000. TransTech, Zürich.Google Scholar
Brotzen, F. 1948. The Swedish Paleocene and its foraminifera. Årsbok Sveriges Geologiska Undersökning, 42:1140.Google Scholar
Brouwer, J. 1969. Foraminiferal assemblages from the Lias of Northwestern Europe. Verhandlingen der Koninklijke Nederlandge Akademie van Wetenschappen, Afo. Natuurkunde, 25:164.Google Scholar
Clarke, K. R. and Warwick, R. M. 1994. Changes in marine communities: an approach to statistical analysis and interpretation. Plymouth (Plymouth Marine Laboratory), 144p.Google Scholar
Clémence, M. E., Gardin, S., Bartolini, A., Paris, G., Beaumont, V., and Page, K. 2010. Early Hettangian benthic-planktonic coupling at Doniford (SW England). Paleoenvironmental implications for the aftermath of the end-Triassic crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 295:102115.CrossRefGoogle Scholar
Copestake, P. and Johnson, B. 1989. The Hettangian to Toarcian (Lower Jurassic), p. 129272. InJenkins, D. G. and Murray, J. W.(eds.), Stratigraphical Atlas of Fossil Foraminifera 2nd Edition. British Micropalaeontological Society Series, Ellis Horwood, Chichester.Google Scholar
Dominici, S., Cioppi, E., Danise, S., Betocchi, U., Gallai, G., Tangocci, F., Valleri, G., and Monechi, S. 2009. Mediterranean fossil whale falls and the adaptation of mollusks to extreme habitats. Geology, 37:815818.CrossRefGoogle Scholar
Fuchs, W. 1967. Übersprung und Phylogenie der Trias-“Globigerinen” und die Bedeutung dieses Formenkreises für das echte plankton. Verhandlungen der Geologischen Bundesanstalt, 1–2:135176.Google Scholar
Fuchs, W. 1970. Eine alpine tiefliassische Foraminifenfauna von Hernstein in Niederösterreich, Verhandlungen der Geologischen Bundesanstalt, 1970:66145.Google Scholar
Gavrilov, Y. O., Shcherbinina, E., and Oberhaensli, H. 2003. Paleocene–Eocene boundary events in the northern peri-Tethys, p. 147168. InWing, S., Gingerich, P., Schmitz, B., and Thomas, E.(eds.), Causes and Consequences of Globally Warm Climates of the Paleogene. Geological Society of America Special Paper 369.CrossRefGoogle Scholar
Guex, J., Bartolini, A., Atudoreia, V., and Taylor, D. 2004. High-resolution ammonite and carbon-isotope stratigraphy across the Triassic–Jurassic Boundary at New York Canyon (Nevada). Earth and Planetary Science Letters, 225:2941.CrossRefGoogle Scholar
Hallam, A. 1995. Oxygen-restricted facies of the basal Jurassic of North West Europe. Historical Biology, 10:247257.CrossRefGoogle Scholar
Hallam, A. 1997. Estimates of the amount and rate sea-level change across the Rhaetian–Hettangian and Pliensbachian–Toarcian boundaries (latest Triassic to Early Jurassic). Journal of the Geological Society of London, 154:773779.CrossRefGoogle Scholar
Hallam, A. and Wignall, P. B. 1999. Mass extinction and sea level-change. Earth-Science Reviews, 48:217258.CrossRefGoogle Scholar
Hammer, Ø, Harper, D. A. T. and Ryryanan, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. Paleontologia Electronica 4, 9 p.http://Paleo-electronica.org/2001_1/past/issue1_01.htm (software available from:http://folk.uio.no/ohammer/past/download.html).Google Scholar
Harries, P. J., Kauffman, E. G., and Hansen, T. A. 1996. Models for biotic survival following mass extinction, p. 4160. InHart, M. B.(ed.), Biotic Recovery from Mass Extinction Events. Geological Society of London Special Publication 102.Google Scholar
Harries, P. J. and Knorr, P. O. 2009. What does the ‘Lilliput Effect' mean? Palaeogeography, Palaeoclimatology, Palaeoecology, 284:210.CrossRefGoogle Scholar
Hart, M. B., Hylton, M. D., Oxford, M. J., Price, G. D., Hudson, W., and Smart, C. W. 2003. The search for the origin of the planktic Foraminifera. Journal of the Geological Society of London, 160:341343.CrossRefGoogle Scholar
Hay, W. W. 1995. Paleoceanography of marine organic-carbon-rich sediments. AAPG Studies in Geology, 40:2159.Google Scholar
Hayek, L. A. and Buzas, M. A. 1997. Surveying Natural Populations. Columbia University Press, New York, 563p.Google Scholar
Hesselbo, S. P., Gröcke, D. R., Jenkyns, H. C., Bjerrum, C. J., Farrimond, P., Morgans Bell, H., and Green, O. R. 2000. Massive dissociation of gas hydrates during the Jurassic Oceanic Anoxic Event. Nature, 406:392395.CrossRefGoogle ScholarPubMed
Hesselbo, S. P., Robinson, S. A., Surlyk, F., and Piasecki, S. 2002. Terrestrial and marine extinction at the Triassic–Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism? Geology, 30:251254.2.0.CO;2>CrossRefGoogle Scholar
Hesselbo, S. P., Robinson, S. A., and Surlyk, F. 2004. Sea-level change and facies development across potential Triassic-Jurassic boundary horizon, SW Britain. Journal of the Geological Society of London, 161:365379.CrossRefGoogle Scholar
Hillebrandt, A. v. 2008. Aragonitische Foraminiferen (Robertinina) aus dem Trias/Jura-Grenzbereich der Nördlichen Kalkalpen und ihre biostratigraphische Bedeutung. In Jahrestagung der Paläontologischen Gesselschaft. Erlanger Geologische Abhandlungen, Sonderbd., 6:34.Google Scholar
Hillebrandt, A. v. 2010a. Aragonitic Foraminifera (Robertinina) from the Triassic-Jurassic Boundary Interval of the Northern Calcareous Alps. Short Papers for the 8th International Congress on the Jurassic System, Peking University. Earth Science Frontiers, 17:7072.Google Scholar
Hillebrandt, A. v. 2010b. Wo kommen die planktonischen Foraminiferen her? Zitteliana, Series B, 29:4950.Google Scholar
Hillebrandt, A. v. 2012. Are the Late Triassic to Early Jurassic aragonitic Oberhauserellidae (Robertinina) the ancestors of planktonic Foraminifera? Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 266:199215.CrossRefGoogle Scholar
Hillebrandt, A. v., Krystyn, L., Kuerschner, W. M., Bown, P.R., McRoberts, C., Ruhl, M., Simms, M., Tomasovycht, A., and Urlichs, M. 2007. A candidate GSSP for the base of the Jurassic in the Northern Calcareous Alps (Kuhjoch section; Karwendel Mountains, Tyrol, Austria). International Submission on Jurassic Stratigraphy Newsletter, 34:220.Google Scholar
Hillebrandt, A. V. and Urlichs, M. 2008. Foraminifera and ostracoda from the northern Calcareous Alps and the end-Triassic biotic crisis. Berichte der Geologischen Bundesanstalt, 76:3037.Google Scholar
Holland, S. M., Miller, A. I., Meyer, D. L., and Dattilo, B. F. 2001. The detection and importance of subtle biofacies change within a single lithofacies: the upper Ordovician Kope Formation of the Cincinnati, Ohio, region. Palaios, 16:205217.2.0.CO;2>CrossRefGoogle Scholar
Holland, S. M. and Patzkowsky, M. E. 2004. Ecosystem structure and stability: middle Upper Ordovician of Central Kentucky, U.S.A. Palaios, 19:316331.2.0.CO;2>CrossRefGoogle Scholar
Huang, B., Harper, D. A. T., Zhan, R., and Rong, J. 2010. Can the Lilliput Effect be detected in the brachiopod faunas of South China following the terminal Ordovician mass extinction? Palaeogeography, Palaeoclimatology, Palaeoecology, 285: 277286.CrossRefGoogle Scholar
Hurlbert, S. H. 1971. The non-concept of species diversity: a critique and alternative parameters. Ecology, 52:577586.CrossRefGoogle Scholar
Hylton, M. D. and Hart, M. B. 2000. Benthonic foraminifera response to Pliensbachian–Toarcian (Lower Jurassic) sea-level change and oceanic anoxia in NW Europe. InHall, R. L. and Smith, P. L.(eds.), Advances in Jurassic Research 2000. TransTech, Zürich, 6:455462.Google Scholar
Jenkyns, H. C. 1988. The early Toarcian (Jurassic) Anoxic Event: stratigraphic, sedimentary and geochemical evidence. American Journal of Science, 288:101151.CrossRefGoogle Scholar
Kaiho, K. 1994. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in themodern ocean. Geology, 22:719722.2.3.CO;2>CrossRefGoogle Scholar
Kaiho, K. 1998. Global climatic forcing of deep-sea benthic foraminifera test size during the past 120 m.y. Geology, 26:491494.2.3.CO;2>CrossRefGoogle Scholar
Keller, G., Abramovich, S., Berner, Z., and Adatte, T. 2009. Biotic effects of the Chicxulub impact, K-T catastrophe and sea level change in Texas. Palaeogeography, Palaeoclimatology, Palaeoecology, 271:5268.CrossRefGoogle Scholar
Kiessling, W., Roniewicz, E., Villier, L., Léonide, P., and Struck, U. 2009. The early Hettangian coral reef in southern France: implications for the end-Triassic reef crisis. Palaios, 24:657671.CrossRefGoogle Scholar
Koutsoukos, E. A. M., Leary, P. N., and Hart, M. B. 1990. Latest Cenomanian–earliest Turonian low-oxygen tolerant benthonic foraminifera: a case study from the Sergipe Basin (N.E. Brazil), and the western Anglo-Paris Basin (Southern England). Palaeogeography, Palaeoclimatology, Palaeoecology, 77:145177.CrossRefGoogle Scholar
Lamarck, J. B. 1804. Suite des mémoires sur les fossiles des environs de Paris. Annales Museum National d'Histoire Naturelle, 5:179188.Google Scholar
Levinton, J. S. 1970. The paleontological significance of opportunistic species. Lethaia, 3:6978.CrossRefGoogle Scholar
Luo, G., Lai, X., Shi, G. R., Jiang, H., Yin, H., Xie, S., Tong, J., Zhang, K., He, W. H., and Wignall, P. B. 2008. Size variation of conodont elements of the Hindeodus-Isarcicella clade during the Permian–Triassic transition in South China and its implication for mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 264:176187.CrossRefGoogle Scholar
Luterbacher, H. P. and Premoli-Silva, I. 1964. Biostratifia del limite Cretaceo-Terziario nell'Appenino central. Rivista Italiana di Paleontologia e Statigrafia, 70:67128.Google Scholar
MacArthur, R. and Wilson, E. O. 1967. The Theory of Island Biogeography. Princeton University Press, 225p.Google Scholar
Mailliot, S., Mattioli, E., Bartolini, A., Baudin, F., Pittet, B., and Guex, J. 2009. Late Pliensbachian–early Toarcian (Early Jurassic) environmental changes in an epicontinental basin of NW Europe (Causses area, central France): a micropaleontological and geochemical approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 273:346364.CrossRefGoogle Scholar
Mander, L., Twitchett, R. J., and Benton, M. J. 2008. Paleocology of the Late Triassic extinction event in the SW UK. Journal of the Geological Society of London, 165:319332.CrossRefGoogle Scholar
MacLeod, N., Ortiz, N., Fefferman, N., Clyde, W., Schulter, C., and MacLean, J. 2000. Phenotypic response of foraminifera to episodes of global environmental change, p. 51–78. InCulver, S. J. and Rawson, P.(eds.), Biotic Response to Global Environmental Change: The Last 145 Million Years. Cambridge University Press, Cambridge.Google Scholar
McElwain, J. C., Beerling, D. J., and Woodward, F. I. 1999. Fossil plants and global warming at the Triassic–Jurassic boundary. Science, 285:13861390.CrossRefGoogle ScholarPubMed
Morozova, V. G. 1961. Datsko-Montskie planktonnye foraminifery yuga SSSR [Dan-Montian planktonic foraminifera of the southern USSR]. Paleotologicheskiy Zhurnal, 2:819.Google Scholar
Morten, S. D. and Twitchett, R. J. 2009. Fluctuations in the body size of marine invertebrates through the Pliensbachian–Toarcian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 284:2938.CrossRefGoogle Scholar
Nagy, J., Hess, S., and Alve, E. 2010. Environmental significance of foraminiferal assemblages dominated by small-sized Ammodiscus and Trochammina in Triassic and Jurassic delta-influenced deposits. Earth-Science Reviews, 99:3149.CrossRefGoogle Scholar
Nocchi, M. and Bartolini, A. 1994. Investigations on the late Domerian–early Toarcian Lagenina and Glomospirella assemblages in the Umbria Marche basin (Central Italy). Geobios, 17:689699.CrossRefGoogle Scholar
Oberhauser, R. 1960. Foraminiferen und Mikrofossilien “incertae sedis” der ladinischen und karnischen Stufe der Trias aus den Ostalpen und aus Persien. Jahrbuch der Geologischen Bundesanstalt, 5:168197.Google Scholar
Olszewski, T. D. and Patzkowski, M. E. 2001. Measuring recurrence of marine biotic gradients: a case study from the Pennsylvanian–Permian Midcontinent. Palaios, 16:444460.2.0.CO;2>CrossRefGoogle Scholar
Page, K. N. and Bloos, G. 1998. The base of the Jurassic system in West Somerset, south west England— new observations on the succession of ammonite faunas of the lowest Hettangian stage. Proceedings of the Ussher Society, 12:15.Google Scholar
Paris, G., Beaumont, V., Bartolini, A., Clémence, M. E., Gardin, S., and Page, K. 2010. Nitrogen isotope record of a perturbed paleoecosystem in the aftermath of the end-Triassic crisis, Doniford section, SW England. Geochemistry, Geophysics, Geosystems, doi:10.1029/2010GC003161.CrossRefGoogle Scholar
Parrish, J. T. 1995. Paleogeography of Corg-rich rocks and the preservation versus production controversy. AAPG Studies in Geology, 40:120.Google Scholar
Patzkowsky, M. E. and Holland, S. M. 2012. Stratigraphic Paleobiology. Understanding the Distribution of Fossil Taxa in Time and Space. The University of Chicago Press, Chicago and London, 259p.CrossRefGoogle Scholar
Pérez-Cruz, L. and Machain-Castillo, M. L. 1990. Benthic foraminifera of the oxygen minimum zone, continental shelf of the Gulf of Tehuantepec, Mexico. Journal of Foraminiferal Research, 20:312325.CrossRefGoogle Scholar
Peypouquet, J.P., Carbonel, P., Ducasse, O., Tölderer-Farmer, M., and Lété, C. 1988. Environmentally cued polymorphism of ostracods: a theoretical and practical approach. A contribution to geology and to the understanding of ostracoda evolution. Developments in Paleontology and Stratigraphy, 11:10031019.CrossRefGoogle Scholar
Posenato, R. 2009. Survival patterns of macrobenthic marine assemblages during the end-Permian mass extinction in the western Tethys (Dolomites, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 280:150167.CrossRefGoogle Scholar
Reolid, M., Rodríguez-Tovar, F. J., Nagy, J., and Olóriz, F. 2008. Benthic foraminiferal morphogroups of mid to outer shelf environments of the Late Jurassic (Prebetic Zone, southern Spain): characterization of biofacies and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 261:280299.CrossRefGoogle Scholar
Reolid, M., Sebane, A., Rodríguez-Tovar, F. J., and Marok, A. 2012a. Foraminiferal morphogroups as a tool to approach the Toarcian Anoxic Event in the Western Saharan Atlas (Algeria). Palaeogeography, Palaeoclimatology, Palaeoecology, 323–325:8799.Google Scholar
Reolid, M., Rodríguez-Tovar, F. J., and Marok, A. 2012b. The Toarcian Oceanic Anoxic Event in the Western Saharan Atlas (North African Paleomargin) role of anoxia and productivity. Geological Society of America Bulletin, 124:16461664.CrossRefGoogle Scholar
Rey, J., Bonnet, L., Cubaynes, R., and Ruget, C. 1994. Sequence stratigraphy and biological signals: statistical studies of benthic foraminifera from Liassic series. Palaeogeography, Palaeoclimatology, Palaeoecology, 111:149171.CrossRefGoogle Scholar
Richardson, L. 1911. The Rhaetic and contiguous deposits of west, mid, and part of east Somerset. Quarterly Journal of the Geological Society of London, 67:174.CrossRefGoogle Scholar
Rhoads, D. C. and Morse, J. W. 1971. Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia, 4:413428.CrossRefGoogle Scholar
Sarmiento, J. L. and Herbert, T. D. 1988. Causes of anoxia in the world ocean. Global Biogeochemical Cycles, 2:115128.CrossRefGoogle Scholar
Simmons, M. D., Boudagher-Fadel, M. K., Banner, F. T., and Whittaker, J. E. 1997. The Jurassic Favusellacea, the earliest Globigerinina, p. 1751. InBoudagher-Fadel, M. K., Banner, F. T. and Whittaker, J. E.(eds.), The early Evolutionary History of Planktonic Foraminifera. Chapman and Hall, London.CrossRefGoogle Scholar
Smit, J. 1982. Extinction and evolution of planktonic foraminifera after a major impact at the Cretaceous/Tertiary boundary. Geological Society of America Special Paper, 190:329352.Google Scholar
Strickland, H. E. 1846. On two species of microscopic shells found in the Lias. Quarterly Journal of Geological Society of London, 2:3031.CrossRefGoogle Scholar
Speijer, R. P. and Wagner, T. 2002. Sea-level changes and black shales associated with the late Paleocene thermal maximum (LPTM): organic geochemical and micropaleontologic evidence from the southern Tethyan margin (Egypt–Israel), p. 533550. InKoeberl, C. and MacLeod, K.(eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Paper 356.CrossRefGoogle Scholar
Swift, A. 1999. Stratigraphy (including biostratigraphy), p. 1530. InSwift, A. and Martill, D. M.(eds.), Fossils of the Rhaetian Penarth Group. Paleontological Association Field Guide to Fossils, 9.Google Scholar
Tanner, L. H., Hubert, J. F., Coffey, B. P., and McInerney, D. P. 2001. Stability of atmospheric CO2 level across the Triassic–Jurassic boundary. Nature, 411:675677.CrossRefGoogle ScholarPubMed
Twitchett, R. J. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 252:132144.CrossRefGoogle Scholar
Twitchett, R. J. and Barras, C. G. 2004. Trace fossils in the aftermath of mass extinction events, p. 397418. InMcllroy, D.(ed.), The Application of Ichnology to Paleoenvironmental and Stratigraphic Analysis. Geological Society of London, Special Publication 228.Google Scholar
Tyszka, J. 1994. Response of Middle Jurassic benthic foraminiferal morphogroups to dysoxic/anoxic conditions in the Pieniny Klippen Basin, Polish Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology, 110:5581.CrossRefGoogle Scholar
Urbanek, A. 1993. Biotic crises in the history of upper Silurian graptoloids: a paleobiological model. Historical Biology, 7:2950.CrossRefGoogle Scholar
Van de Schootbrugge, B., Quan, T. M., Lindströom, S., Pütmann, W., Heunisch, C., Pross, J., Fiebig, J., Petschick, R., Röhling, H. G., Richoz, S., Rosenthal, Y., and Falkowski, P. G. 2009. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience, 2:589594.CrossRefGoogle Scholar
Wade, B. S. and Twitchett, R. J. 2009. Extinction, dwarfing and the Lilliput Effect. Palaeogeography, Palaeoclimatology, Palaeoecology, 284:13.CrossRefGoogle Scholar
Warrington, G., Cope, J. C. W., and Ivimey-Cook, H. C. 1994. St Audrie's Bay, Somerset, England: a candidate Global Stratotype Section and Point for the Point for the base of the Jurassic System. Geological Magazine, 131:191200.CrossRefGoogle Scholar
Warrington, G., Cope, J. C. W., and Ivimey-Cook, H. C. 2008. The St Audrie's Bay–Doniford Bay section, Somerset, England: updated proposal for a candidate Global Stratotype Section and point for the base of Hettangian Stage, and of the Jurassic System. International Subcommission on Jurassic stratigraphy. Newsletter, 35:266.Google Scholar
Weedon, G. P., Jenkyns, H. C., Coe, A. L., and Hesselbo, S. P. 1999. Astronomical calibration of the Jurassic time-scale from cyclostratigraphy in British mudrock formations. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 357:17871813.CrossRefGoogle Scholar
Wernli, R. 1988. Les protoglobigérines (foraminifères) du Toarcien et de l'Aalénien du Donuz Dag (Taurus occidental, Turquie). Eclogae Geologicae Helvetiae, 81:661668.Google Scholar
Wernli, R. 1995. Les foraminifères globigériniformes (Oberhauserellidae) du Toarcien inférieur de Teysachaux (Préalpes medianes, Fribourg, Suisse). Revue de Paléobiologie, 14:257269.Google Scholar
Whittaker, A. and Green, G. W. 1983. Geology of the country around Weston-super-Mare. Memoir for 1:50000 geological sheet 297, new series, with parts of sheets 263 and 295. Geological Survey of Great Britain, England and Wales, 59–78.Google Scholar
Wignall, P. B. 2001. Sedimentology of the Triassic-Jurassic boundary beds in Pinhay Bay (Devon, SW England). Proceedings of the Geologists' Association, London, 112:349360.CrossRefGoogle Scholar
Wignall, P. B. and Bond, P. G. 2008. The end-Triassic and Early Jurassic mass extinction records in the British Isles. Proceedings of the Geologists' Association, London, 119:7384.CrossRefGoogle Scholar