Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T17:39:33.117Z Has data issue: false hasContentIssue false

The problematic aquatic palynomorph genus Cobricosphaeridium Harland and Sarjeant, 1970 emend., with new records from the Holocene of Argentina

Published online by Cambridge University Press:  20 May 2016

Martin J. Head
Affiliation:
1Godwin Institute for Quaternary Research, Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, United Kingdom,
C. Marcela Borel
Affiliation:
2Departamento de Geología, Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Argentina,
G. Raquel Guerstein
Affiliation:
3Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Geología, Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Argentina,
Rex Harland
Affiliation:
4DinoData Services, 50 Long Acre, Bingham, Nottingham NG13 8AH, and Palynology Research Facility, Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield S10 2TN, United Kingdom,

Abstract

The aquatic palynomorph genus Cobricosphaeridium Harland and Sarjeant, 1970 was described from Holocene deposits of Australia. Restudy of the type material shows that these palynomorphs may represent the eggs of crustaceans, and that earlier attributions to the division Dinoflagellata are unsustainable. The genus Aquadulcum Harland and Sarjeant, 1970, also first described as a dinoflagellate from the Holocene of Australia, is treated as a synonym of Cobricosphaeridium, and the following new combinations are proposed: C. awendae, C. myalupense, C. pikeae, C. serpens, C. yanchepense, C.? ovatum, and C.? vermiculatum. Previous records of the genus are restricted to the Holocene and indicate a freshwater affinity.

Cobricosphaeridium has now been found in Holocene subsurface brackish deposits of Laguna Hinojales in eastern Argentina. This is the first record of this genus from South America and unequivocally extends its ecological range into a brackish environment. Several species are represented, including Cobricosphaeridium hinojalensis new species; and their potential as paleoenvironmental indicators is evaluated.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batten, D. J., and Grenfell, H. R. 1996. Green and blue-green algae, 7D-Botryococcus, p. 205214. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications, Volume 1. American Association of Stratigraphic Palynologists Foundation, College Station, Texas.Google Scholar
Belmonte, G. 1997. Resting eggs in the life cycle of Acartia italica and A. adriatica (Copepoda, Calanoida, Acartiidae). Crustaceana, 70:114117.Google Scholar
Belmonte, G. 1998. The egg morphology of 7 Acartiidae species: a preliminary survey of the ootaxonomy of calanoids. Journal of Marine Systems, 15:3539.Google Scholar
Boltovskoy, A. 1973a. Peridinium gatunense Nygaard. Estructura y estereoultraestructura tecal (Dinoflagellida). Physis (Buenos Aires), sección B, 32(85):331344.Google Scholar
Boltovskoy, A. 1973b. Formacion del arqueopilo en tecas de dinoflagelados. Revista Española de Micropaleontología, 5:8198.Google Scholar
Boltovskoy, A. 1975. Estructura y estereoultraestructura tecal de dinoflagelados. II. Peridinium cinctum (Müller) Ehrenberg. Physis (Buenos Aires), sección B, 34(89):7384.Google Scholar
Boltovskoy, A. 1976. Estructura y estereoultraestructura tecal de dinoflagelados. III. Peridinium bipes Stein, forma apoda, n. f. Physis (Buenos Aires), sección B, 35(91):147155.Google Scholar
Boltovskoy, A. 1989. Thecal morphology of the dinoflagellate Peridinium gutwinskii. Nova Hedwigia, 49:369380.Google Scholar
Borel, C. M., Guerstein, G. R., and Prieto, A. R.In press. Significado paleoecológico de algas y acritarchos, Holoceno de la provincia de Buenos Aires, Argentina. Ameghiniana.Google Scholar
Burden, E. T., McAndrews, J. H., and Norris, G. 1986. Palynology of Indian and European forest clearance and farming in lake sediment cores from Awenda Provincial Park, Ontario. Canadian Journal of Earth Sciences, 23:4354.Google Scholar
Castro-Longoria, E. 2001. Comparative observations on the external morphology of subitaneous and diapause eggs of Acartia species from Southampton Water. Crustaceana, 74:225236.Google Scholar
Churchill, D. M., and Sarjeant, W. A. S. 1962. Freshwater microplankton from Flandrian (Holocene) peats of southwestern Australia. Grana Palynologica, 3:2953.Google Scholar
D'orbigny, A. 1835. Synopsis. Terrestrium et fluviatalium molluscorum, in suo per Americam meridionalem itinere. Magasin de Zoologie, 5, part 5(61–62):144.Google Scholar
D'orbigny, A. 1839. Foraminieres. In Ramon de la Sagre. Histoire physique, politique et naturellee de i'ile de Cuba. Arthus Bertrand, Paris, 1224.Google Scholar
Ehrenberg, C. G. 1838. Die Infusionsthierchen als vollkommene Organismen, Ein Blick in das Tiefere Organische Leben der Natur. Leopold Voss, Leipzig, i-xvii, 1548.Google Scholar
Ehrenberg, C. G. 1840. Characteristik von 274 neuen Arten von Infusorien. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlichen Preussischen Akademie der Wissenschaften zu Berlin, 197219.Google Scholar
Ehrenberg, C. G. 1843. Verbreitung und Einfluss des mikroskopischen Lebens in Süd- und Nord-Amerika. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, Physikalische, 1, 291445[Imprinted 1841].Google Scholar
Evitt, W. R. 1963. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, I. Proceedings of the National Academy of Sciences, 49:158164.Google Scholar
Evitt, W. R. 1967. Dinoflagellate studies, II. The Archeopyle. Stanford University Publications, Geological Sciences, 10(3):183.Google Scholar
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., and Williams, G. L. 1993. A Classification of Living and Fossil Dinoflagellates. Micropaleontology Special Publication Number 7, 351 p.Google Scholar
Frengüelli, J. 1934. Diatomeas del Plioceno superior de las Guayquerias de San Carlos (Mendoza). Revista del Museo de La Plata, 34:339371.Google Scholar
Ruiqi, Gao, Chengquan, He, and Xiuyun, Qiao. 1992. Cretaceous Nonmarine Dinoflagellates, Chlorophytes and Acritarchs from the Songliao Basin, p. 168, pl. 1–20. Nanking University Press, Nanjing, China. (In Chinese and English)Google Scholar
Grunow, A. 1862. Die österreichischen Diatomeen nebst Anschluss einiger neuen Arten von anderen Lokalitäten und einer kritischen Übersicht der bisher bekannten Gattungen un Arten. Erste Folge. Epithemieae, Meridioneae, Diatomeae, Entopyleae, Surirelleae, Amphipleureae. Zweite Folge. Familie Nitzschieae. Verhandlungen der kaiserlich-königlichen zoologisch-botanischen Gesellschaft in Wien, 12:315472,545–588.Google Scholar
Guarrera, S. A., Cabrera, S. M., Lopez, F., and Tell, G. 1968. Fitoplancton de las aguas superficiales de la provincia de Buenos Aires. I. Area de la Pampa Deprimida. Revista del Museo de La Plata, Sección Botánica, 10:223331.Google Scholar
Gutentag, E. D., and Benson, R. H. 1962. Neogene (Plio-Pleistocene) fresh-water ostracodes from the central high plains. Bulletin of the State Geological Survey of Kansas, 157:160.Google Scholar
Harland, R., and Sarjeant, W. A. S. 1970. Fossil freshwater microplankton (dinoflagellates and acritarchs) from Flandrian (Holocene) sediments of Victoria and Western Australia. Proceedings of the Royal Society of Victoria, 83:211234.Google Scholar
Hartmann, G. 1955. Neue marine Ostracoden der Familie Cypridae und der Subfamilie Cytherideinae der Familie Cytheridae aus Brasilien. Zoologischer Anzeiger, 154:109127.Google Scholar
Head, M. J. 1996. Modern dinoflagellate cysts and their biological affinities, p. 11971248. In Jansonius, J. and McGregor, D. C. (eds.), Palynology: Principles and Applications, Volume 3. American Association of Stratigraphic Palynologists Foundation, College Station, Texas.Google Scholar
Hoshaw, R. W., and McCourt, R. M. 1988. The Zygnemataceae (Chlorophyta): a twenty-year update of research. Phycologia, 27:511548.Google Scholar
Lee, R. E. 1989. Phycology (second edition). Cambridge University Press, Cambridge and New York, 645 p.Google Scholar
McMinn, A. 1991. Recent dinoflagellate cysts from estuaries on the central coast of New South Wales, Australia. Micropaleontology, 37:269287.Google Scholar
McMinn, A., Bolch, C., and Hallegraeff, G. 1992. Cobricosphaeridium Harland and Sarjeant: dinoflagellate cyst or copepod egg? Micropaleontology, 38:315316.Google Scholar
Meneghini, G. 1840. Synopsis Desmidiacearum hucusque cognitarum. Linnaea, 14:201240.Google Scholar
Müller, O. 1895. Rhopalodia, eine neues Genus der Bacillariaceen. Engler's botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 22:5471.Google Scholar
Norris, G., and McAndrews, J. H. 1970. Dinoflagellate cysts from post-glacial lake muds, Minnesota (U.S.A.). Review of Palaeobotany and Palynology, 10:131156.Google Scholar
Prieto, A. R., Stutz, S., Ferrero, L., Espinosa, M. A., De Francesco, C. G., and Isla, F. I. 1998. Evidencias de la transgresión holocénica en la Laguna Hinojales (37°34'S; 57°27'W). V Jornadas Geológicas y Geofísicas Bonaerenses (Mar del Plata), Actas: 257258.Google Scholar
Simonsen, R. 1979. The diatom system: ideas on phylogeny. Bacillaria, 2:971.Google Scholar
Soják, J. 1972. Nomenklatoticke poznamky (Phanerogamae). Casiopsis Národního Muzea, Praha, 140(3–4):127134.Google Scholar
Zhichen, Song, Xueting, Guan, Zengrui, Li, Yahui, Zheng, Weiming, Wang, and Zhongheng, Hu. 1985. A Research on Cenozoic Palynology of the Longjing Structural Area in the Shelf Basin of the East China Sea (Donghai) Region. Anhui Science and Technology Publishing House, Hefei, p. 1209, pls. 1–55. (In Chinese with English summary)Google Scholar
Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores, 13:615621.Google Scholar
Stutz, S., Prieto, A. R., and Isla, F. L. 2002. Historia de la vegetación del Hoceno de la laguna Hinojales, sudeste de la provinica de Buenos Aires, Argentina. Ameghiniana, 39:8594.Google Scholar
Tell, G., and Mataloni, G. 1990. Systematic studies on the Pediastrum kawraiskyi-musterii-patagonicum complex (Chlorophyta): two new species and morphological variations in two Patagonian lakes (Argentina). Nova Hedwigia, 50:159180.Google Scholar
Turpin, P. J. F. 1828a. Observations sur le Nouveau Genre Surirella. Mémoires du Muséum d'Histoire Naturelle de Paris, 16:361368.Google Scholar
Turpin, P. J. F. 1828b. Aperçu organographique sur le nombre deux. Mémoires du Musëum d'Histoire Naturelle de Paris, 16:296344.Google Scholar
Violante, R. A. 1992. Ambientes sedimentarios asociados a un sistema de barrera litoral del Holoceno en la llanura costera al sur de Villa Gesell, Provincia de Buenos Aires. Revista de la Asociación Geológica Argentina, 47:201214.Google Scholar
Whatley, R. C., and Cholich, T. C. 1974. A new Quaternary ostracod genus from Argentina. Palaeontology, 17:669684.Google Scholar
Williams, G. L., Lentin, J. K., and Fensome, R. A. 1998. The Lentin and Williams index of fossil dinoflagellates 1998 edition. American Association of Stratigraphic Palynologists, Contributions Series, 34:1817.Google Scholar