Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T16:49:31.218Z Has data issue: false hasContentIssue false

The Plio-Pleistocene ancestor of wild dogs, Lycaon sekowei n. sp.

Published online by Cambridge University Press:  14 July 2015

Adam Hartstone-Rose
Affiliation:
1Pennsylvania State University, 205 Hawthorn, 3000 Ivy Side Park, Altoona, 16601
Lars Werdelin
Affiliation:
2Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden
Darryl J. De Ruiter
Affiliation:
3Department of Anthropology, Texas A&M University, College Station, 77843
Lee R. Berger
Affiliation:
4Institute for Human Origins, Bernard Price Institute for Palaeontology, School of GeoSciences, University of the Witwatersrand, Johannesburg, South Africa 2050
Steven E. Churchill
Affiliation:
5Department of Evolutionary Anthropology, Box 90383, Duke University, Durham, North Carolina 27708

Abstract

African wild dogs (Lycaon pictus) occupy an ecological niche characterized by hypercarnivory and cursorial hunting. Previous interpretations drawn from a limited, mostly Eurasian fossil record suggest that the evolutionary shift to cursorial hunting preceded the emergence of hypercarnivory in the Lycaon lineage. Here we describe 1.9—1.0 ma fossils from two South African sites representing a putative ancestor of the wild dog. the holotype is a nearly complete maxilla from Coopers Cave, and another specimen tentatively assigned to the new taxon, from Gladysvale, is the most nearly complete mammalian skeleton ever described from the Sterkfontein Valley, Gauteng, South Africa. the canid represented by these fossils is larger and more robust than are any of the other fossil or extant sub-Saharan canids. Unlike other purported L. pictus ancestors, it has distinct accessory cusps on its premolars and anterior accessory cuspids on its lower premolars—a trait unique to Lycaon among living canids. However, another hallmark autapomorphy of L. pictus, the tetradactyl manus, is not found in the new species; the Gladysvale skeleton includes a large first metacarpal. Thus, the anatomy of this new early member of the Lycaon branch suggests that, contrary to previous hypotheses, dietary specialization appears to have preceded cursorial hunting in the evolution of the Lycaon lineage. We assign these specimens to the taxon Lycaon sekowei n. sp.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, K. and Werdelin, L.. 2003. The evolution of cursorial carnivores in the Tertiary: Implications of elbow joint morphology. Proceedings of the Royal Society Biological Sciences, 270:S163S165.CrossRefGoogle ScholarPubMed
Andersson, K. 2004. Elbow-joint morphology as a guide to forearm function and foraging behaviour in mammalian carnivores. Zoological Journal of the Linnean Society, 142:91104.CrossRefGoogle Scholar
Bardeleben, C., Moore, R. L., and Wayne, R. K.. 2005. A molecular phylogeny of the Canidae based on six nuclear loci. Molecular Phylogenetics and Evolution, 37:815831.CrossRefGoogle ScholarPubMed
Broom, R. 1948. Some South African Pliocene and Pleistocene mammals. Annals of the Transvaal Museum, 21:138.Google Scholar
Dallas, W. S. 1856. A natural history of the animal kindom; being a systematic and popular description of the habits, structure, and classification of animals, from the lowest to the highest forms. Houlston and Stoneman, London, 817 p.Google Scholar
Fanshawe, J. H., Ginsberg, J. R., Sillero-Zubiri, C., and Woodroffe, R.. 1997. The status and distribution of remaining wild dog populations, p. 1157. In Woodroffe, R., Ginsberg, J. R., and MacDonald, D. W. (eds.), The African Wild Dog: Status survey and conservation action plan. IUCN, Gland, Switzerland.Google Scholar
Fischer, G. 1817. Adversaria zoologica, fasciculus primus. Mémoires de la Société des Naturalistes de Moscou, 5:357446.Google Scholar
Flower, W. H. and Lydekker, R.. 1891. An introduction to the study of mammals living and extinct. Adam and Charles Black, London, 763 p.Google Scholar
Forsyth Major, C. 1877. Considerazioni sulle faune dei Mammiferi Pliocenici e Postpliocenici della Toscana, Pisa. Atti della Società Toscana di sciencze naturali. Memorie., III:207227.Google Scholar
Griffith, E., Smith, C., and Pidgeon, E.. 1827. The animal kingdom arranged in conformity with its organization by the Baron Cuvier, with additional descriptions of all the species hitherto named, and of many not before noticed. G. B. Whittaker, London, 392 p.Google Scholar
Hartstone-Rose, A., de Ruiter, D. J., Berger, L. R., and Churchill, S. E.. 2007. A saber-tooth felid from Coopers Cave (Gauteng, South Africa) and its implications for Megantereon (Felidae, Machairodontinae) taxonomy. Palaeontologia Africana, 44:99108.Google Scholar
Hartstone-Rose, A. 2008. Evaluating the hominin scavenging niche through analysis of the carcass-processing abilities of the carnivore guild. Biological Anthropology and Anatomy. Unpublished dissertation, Duke University, 190 p.Google Scholar
Hilzheimer, M. 1906. Die Geographische Verbreitung der afrikanischen Grauschakale. Zoologischer Beobachter, 47:363373.Google Scholar
Hodgson, B. 1838. Proceedings of learned societies. Annals of Natural History, 1:152.Google Scholar
Kretzoi, M. 1938. Die Raubtiere von Gombaszog nebst einer Übersicht der Gesamtfauna. National Natural History Museum of Hungary, Pars Miner. Geologic Paleontology, 31:88157.Google Scholar
Lindblad-Toh, K., Wade, C. M., Mikkelsen, T. S., Karlsson, E. K., Jaffe, D. B., Kamal, M., Clamp, M., Chang, J. L., Kulbokas, E. J. III, Zody, M. C., Mauceli, E., Xie, X., Breen, M., Wayne, R. K., Ostrander, E. A., Ponting, C. P., Galibert, F., Smith, D. R., Dejong, P. J., Kirkness, E., Alvarez, E., Biagi, T., Brockman, W., Butler, J., Chin, C.-W., Cook, A., Cuff, J., Daly, M. J., Decaprio, D., Gnerre, S., Grabherr, M., Kellis, M., Kleber, M., Bardeleben, C., Goodstadt, L., Heger, A., Hitte, C., Kim, L., Koepfli, K.-P., Parker, H. G., Pollinger, J. P., Searle, S. M. J., Sutter, N. B., Thomas, R., Webber, C., and Lander, E. S.. 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature, 438:803819.CrossRefGoogle ScholarPubMed
Linnaeus, C. 1758. Systema naturae Laurentii Salvii, Holmiae, 824 p.Google Scholar
Martinez-Navarro, B. and Rook, L. 2003. Gradual evolution in the African Hunting Dog lineage-systematic implications. Comptes Rendus Palevol, 2(8):695702.CrossRefGoogle Scholar
Nowak, R. M. 1991. Walker's mammals of the world (5). Johns Hopkins UP, Baltimore and London, 1712 p.Google Scholar
Pohle, H. 1928. Die Raubtiere von Oldoway. Wissenschaftliche Ergebnisse der Oldoway-Expedition 1913. Neue folge, Hefte, 3:4554.Google Scholar
Rook, L. 1994. The Plio-Pleistocene Old World Canis (Xenocyon) ex gr. Falconeri. Bollettino della Società Paleontologica Italiana, 33:7182.Google Scholar
Tedford, R. H., Taylor, B. E. and Wang, X.. 1995. Phylogeny of the Caninae (Carnivora: Canidae): The living taxa. Novitates, 3146:137.Google Scholar
Valkenburgh, B. van. 1991. Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): Evolutionary interactions among sympatric predators. Paleobiology 17:340362.CrossRefGoogle Scholar
Valkenburgh, B. van and Koepfli, K.-P.. 1993. Cranial and dental adaptations to predation in canids. Symposium on Mammals as Predators, Zoological Society of London, p. 1537.Google Scholar
Zrzavy, J. and Řičánková, V.. 2004. Phylogeny of recent Canidae (Mammalia, Carnivora): Relative reliability and utility of morphological and molecular datasets. Zoologica Scripta, 33(4):311333.CrossRefGoogle Scholar