Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T03:25:57.180Z Has data issue: false hasContentIssue false

Physiological, environmental, and mineralogical controls on Mg and Sr concentrations in Nautilus

Published online by Cambridge University Press:  20 May 2016

K. O. Mann*
Affiliation:
Department of Geology, Juniata College, Huntingdon, Pennsylvania 16652

Abstract

Describing the chemical ontogeny of 36 specimens of Nautilus allowed the identification, as well as the determination of the relative effects, of the controls on Mg and Sr concentration in skeletal aragonite. The previously documented trend that aragonite contains higher concentrations of Sr than Mg persists within skeletal structures of Nautilus. This relationship suggests that neither physiological nor environmental controls overwhelm the mineralogical control. Significant differences in Mg and Sr concentrations of nacreous shell, prismatic shell, and septal nacre suggest that these structures may form from extracellular fluids with differing elemental concentrations. Many specimens exhibit greater variability of Mg and Sr concentrations in juvenile portions of the skeleton than in more mature portions. This suggests that either the physiochemical system matures during ontogeny and achieves increasing control over skeletal chemistry or the organism adjusts to the new conditions and behavioral maturation stabilizes elemental concentrations by reducing stress. The decreased growth rate that Nautilus experiences as it approaches maturity does not effect Mg or Sr concentrations. Differences in combined Mg and Sr concentrations among species of Nautilus indicate that extracellular fluids that produce each skeletal structure are chemically distinct, with the exception of the fluids that produced septal aragnite of N. belauensis and N. scrobiculatus, and exemplify phyletic control of trace element concentration at the species level. Although significant chemical separation exists among species of Nautilus, sufficient variation and overlap persists in elemental concentrations to make a classification based solely on these two elements ineffective. Significant chemical differences between two sympatric species of Nautilus demonstrate that physiological systems, and not environmental variables, primarily control elemental concentrations in skeletal aragonite.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amiel, A. J., Fridman, G. M., and Miller, D. S. 1973. Distribution and nature of incorporation of trace elements in modern aragonitic corals. Sedimentology, 20:4764.Google Scholar
Arnold, J., Landman, N. H., and Mutvel, H. 1987. Development of the embryonic shell of Nautilus, p. 373400. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus: The Biology and Paleobiology of a Living Fossil. Plenum Press, New York.Google Scholar
Brewer, P. G. 1975. Minor elements in sea water, p. 139147. In Riley, J. P. and Skirrow, G. (eds.), Chemical Oceanography, Vol. I. Academic Press, London.Google Scholar
Brownlow, A. H. 1979. Geochemistry. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 498 p.Google Scholar
Buchart, B., and Fritz, P. 1978. Strontium uptake in shell aragonite from the freshwater gastropod Limnaea stagnalis. Science, 199:291292.CrossRefGoogle Scholar
Burton, E. A., and Walter, L. M. 1987. Relative precipitation rates of aragonite and Mg calcite from sea water: temperature or carbonate ion control? Geology, 15:111114.Google Scholar
Bütschli, O. 1908. Untersuchungen über organische Kalkgebilide, nebst Bermerkungen über organische Kieselgebilde, insbesondere über das spizifische Gewicht in Beziehung zu der Struktur, die chemische Zusammensetzung und Anderes. Abhandlungen Der Königlichen Gesellschaft der Wissenschaften zu Gottingen Mathematisch-Physikalische Klasse, Neue Folge, Band VI, Nro. 3.Google Scholar
Carlson, B. A., McKibben, J. N., and DeGuy, M. V. 1984. Telemetric investigation of vertical migration of Nautilus belauensis in Palau (Western Caroline Islands, Pacific Ocean). Pacific Science, 38:183188.Google Scholar
Chamberlain, J. A., Chamberlain, R. B., and Pillsbury, S. W. 1983. Cephalopod septal strength is not an index of cephalopod septal strength. Geological Society of America Abstracts with Programs, 15:542.Google Scholar
Chamberlain, J. A., and Moore, W. A. 1982. Rupture strength and flow rate of Nautilus siphuncular tube. Paleobiology, 8:408425.Google Scholar
Chave, K. E. 1954. Aspects of biogeochemistry of magnesium I: calcareous marine organisms. Journal of Geology, 62:266283.Google Scholar
Clarke, F. W., and Wheeler, W. C. 1922. The inorganic constituents of marine invertebrates. U.S. Geological Survey Professional Paper 124, 62 p.Google Scholar
Cochran, J. K., and Landman, N. H. 1984. Radiometric determination of the growth rate of Nautilus. Nature, 308:725727.Google Scholar
Crenshaw, M. A. 1980. Mechanisms of shell formation and dissolution, p. 115132. In Rhoads, D. C. and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms. Plenum Press, New York.Google Scholar
Crick, R. E., Burkart, B., Chamberlain, J. A., and Mann, K. O. 1985. Chemistry of calcified portions of Nautilus pompilius. Journal of Marine Biology, United Kingdom, 65:415420.Google Scholar
Crick, R. E., and Mann, K. O. 1987. Biomineralization and systematic implications, p. 115136. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus: The Biology and Paleobiology of a Living Fossil. Plenum Press, New York.Google Scholar
Crick, R. E., Mann, K. O., and Chamberlain, J. A. 1987. Skeletal chemistry of Nautilus and its taxonomic significance. Biochemical Systematics and Ecology, 15:461474.Google Scholar
Crick, R. E., and Ward, P. D. 1984. The Sr, Mg and Ca chemistry of the skeleton of Nautilus. Geology, 12:99102.Google Scholar
Crick, R. E., and Ottensmann, V. M. 1981. The biochemistry of some Pennsylvanian nautiloids: implications for the physiochemistry of the Cephalopoda. Geological Society of America Abstracts with Programs, 13:434.Google Scholar
Crick, R. E., and Ottensmann, V. M. 1983. Sr, Mg, Ca, and Mn chemistry of skeletal components of a Pennsylvanian and Recent nautiloid. Chemical Geology, 39:147163.Google Scholar
Davies, T. T., Crenshaw, M. L., and Heartfield, B. M. 1972. The effect of temperature on the chemistry and structure of echinoid spine regeneration. Journal of Paleontology, 46:874883.Google Scholar
Davis, J. C. 1983. Statistics and Data Analysis in Geology. John Wiley and Sons, New York, 646 p.Google Scholar
Davis, R. A. 1987. Nautilus studies—the first twenty-two centuries, p. 324. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus: The Biology and Paleobiology of a Living Fossil. Plenum Press, New York.Google Scholar
Denton, E. J., and Gilpin-Brown, J. B. 1966. On the buoyancy of the pearly Nautilus. Journal of the Marine Biological Association of the United Kingdom, 46:723759.Google Scholar
Dodd, J. R. 1965. Environmental control of strontium and magnesium in Mytilus. Geochemica et Cosmochimica Acta, 29:385398.Google Scholar
Dodd, J. R. 1967. Magnesium and strontium in calcareous skeletons: a review. Journal of Paleontology, 41:13131329.Google Scholar
Dodd, J. R., and Stanton, R. J. 1981. Paleoecology: Concepts and Applications. John Wiley and Sons, New York, 559 p.Google Scholar
Eisma, D., Mook, W. G., and Das, H. A. 1976. Shell characteristics, isotopic composition and trace-element contents of some euryhaline molluscs as indicators of salinity. Palaeogeography, Palaeoclimatology, Palaeoecology, 19:3962.Google Scholar
Erben, H. K., Flajs, G., and Siehl, S. 1969. Die frühontogenetische Entwicklung der Schalenstruktur ectocochleater Cephalopoden. Palaeontographica, Abteilung A, Palaeozoologie-Stratigraphie, 132:154.Google Scholar
Füchtbauer, H., and Hardie, L. A. 1976. Experimentally determined homogeneous distribution coefficients for precipitated magnesium calcites. Geological Society of America Abstracts with Programs, 8:877.Google Scholar
Graham, D. W., Bender, M. L., Williams, D. F., and Keigwin, L. D. 1982. Strontium-calcium ratios in Cenozoic planktonic foraminifera. Geochimica et Cosmochimica Acta, 46:12811292.Google Scholar
Greenwald, L., and Ward, P. D. 1982. On the source of cameral liquid in the chambered Nautilus. Veliger, 25:169170.Google Scholar
Grégoire, C. 1962. On submicroscopic structure of the Nautilus shell. Bulletin de L'Institut Royal des Sciences Naturelles de Belgique, 38:171.Google Scholar
Grégoire, C. 1987. Ultrastructure of the Nautilus shell, p. 463488. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus: The Biology and Paleobiology of a Living Fossil. Plenum Press, New York.Google Scholar
Griffin, L. E. 1900. The anatomy of Nautilus pompilius. National Academy of Science Memoir, 8:101230.Google Scholar
Hallam, A., and Price, N. B. 1968. Environmental and biochemical control of Sr in shell of Cardium edule. Geochemica et Cosmochemica Acta, 32:319328.Google Scholar
Harriss, R. C. 1965. Trace element distribution in molluscan skeletal material I. Magnesium, iron, manganese and strontium. Bulletin of Marine Science, 15:265273.Google Scholar
Hayasaka, S., Oki, K., Tanabe, K., Saisho, T., and Shinomiya, A. 1987. On the habitat of Nautilus pompilius in Tañon Strait (Philippines) and the Fiji Islands, p. 179200. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus: The Biology and Paleobiology of a Living Fossil. Plenum Press, New York.Google Scholar
Holland, H. D., Kirsipu, T. V., Huebner, J. S., and Oxburgh, U. M. 1964. On some aspects of the chemical evolution of cave water. Journal of Geology, 72:3667.Google Scholar
Houck, J. E., Buddumeier, R. W., Smit, S. V., and Jokiel, P. L. 1977. The response of coral growth rate and skeletal strontium content to light intensity and water temperature. Proceedings of the Third International Coral Reef Symposium, Miami, 2:426431.Google Scholar
Istin, M., and Kirschner, L. B. 1968. On the origin of bioelectrical potential generated by the freshwater clam mantle. Journal of General Physiology, 51:478496.Google Scholar
Jones, D. S. 1985. Growth increments and geochemical variations in the molluscan shell, p. 7287. In Broadhead, T. W. (ed.), Mollusks: Notes for a Short Course. University of Tennessee, Department of Geological Sciences, Studies in Geology, 13.Google Scholar
Katz, A. 1973. The interaction of magnesium with calcite during crystal growth at 25–98°C and one atmosphere. Geochemica et Cosmochimica Acta, 37:15631586.Google Scholar
Kinsman, D. J. J., and Holland, H. D. 1969. The co-precipitation of Sr2+ with aragonite between 16 and 96°C. Geochemica et Cosmochimica Acta, 33:117.Google Scholar
Kitano, Y., Kanomori, N., and Oomori, T. 1971. Measurement of distribution coefficients of strontium and barium between carbonate precipitation and solution—abnormally high values of distribution coefficients measured at early stages of carbonate formation. Geochemical Journal (Japan), 4:183206.Google Scholar
Klecka, W. R. 1980. Discriminant analysis. Sage University Paper Series Quantitative Applications in the Social Sciences, Series 07–019, Sage Publications, London, 70 p.Google Scholar
Landman, N. H. 1982. Aristotle, Alexander and the pearly nautilus. Discovery, 16:2023.Google Scholar
Lehninger, A. 1970. Mitochondria and calcium ion transport. Biochemical Journal, 119:129138.Google Scholar
Lerman, A. 1965. Strontium and magnesium in water and Crassostrea calcite. Science, 150:745751.Google Scholar
Lightfoot, J. 1786. A catalogue of the Portland Museum, lately the property of the Duchess Dowager of Portland, deceased. London, 194 p.Google Scholar
Linnaeus, K. (ed.). 1758–1759. Systema Naturae, 10th edition. Holm.Google Scholar
Lorens, R. B. 1981. Sr, Cd, Mn, and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochemica et Cosmochemica Acta, 45:553561.Google Scholar
Lorens, R. B., and Bender, M. L. 1980. The impact of solution chemistry on Mytilus edule calcite and aragonite. Geochemica et Cosmochimica Acta, 44:12651278.Google Scholar
Lowenstam, H. A. 1963a. Sr/Ca ratio of skeletal aragonites from the recent marine biota at Palau and from fossil gastropods, p. 114132. In Craig, H., Miller, L., and Wasserburg, G. J. (eds.), Isotopic and Cosmic Chemistry. North Holland Publishing Co., Amsterdam.Google Scholar
Lowenstam, H. A. 1963b. Biologic problems relating to the composition and diagenesis of sediments, p. 137159. In Donnely, T. W. (ed.), The Earth Sciences; Problems and Progress in Current Research. The University of Chicago Press, Chicago.Google Scholar
Lowenstam, H. A., Traub, W., and Weiner, S. 1984. Nautilus hard parts: a study of the mineral and organic constitutents. Paleobiology, 10:268279.Google Scholar
Mann, K. O. 1983. The Sr, Mg, and Ca chemistry of the mineralized structures of Nautilus. Unpubl. M.S. thesis, The University of Texas at Arlington, Arlington, Texas, 99 p.Google Scholar
Mann, K. O. 1987. Physiological, environmental, and mineralogical controls on Mg and Sr concentrations in the skeletal structures of Nautilus. Unpubl. Ph.D. dissertation, The University of Iowa, Iowa City, Iowa, 297 p.Google Scholar
Mann, K. O., Crick, R. E., Chamberlain, J. A., and Burkart, B. 1983. Shell formation and other aspects of biomineralization in Nautilus. Geological Society of America Abstracts with Programs, 14:635.Google Scholar
Morrison, J. O., and Brand, U. 1986. Geochemistry of recent marine invertebrates: Paleoscene #5. Geoscience Canada, 13:237254.Google Scholar
Mutvei, H. 1964. On the shells of Nautilus and Spirula with notes on the shell secretion of noncephalopod molluscs. Arkiv for Zoologi, 16:221278.Google Scholar
Mutvei, H. 1972. Ultrastructural studies on cephalopod shell, part I: the septa and siphonal tube in Nautilus. Bulletin of the Geological Institutions of the University of Uppsala, N. S. 3, 8:237261.Google Scholar
Nei, M. 1975. Molecular Population Genetics and Evolution. North-Holland, Amsterdam, 288 p.Google Scholar
Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89:583590.Google Scholar
Neri, R. G., Schifano, G., and Papenicolaou, C. P. 1979. Effects of salinity on mineralogy and chemical composition of Cerastoderma edule and Monodonta articulata shells. Marine Geology, 30:233241.Google Scholar
Noll, W. 1934. Geochemie des Strontiums. Mit. Bemerkungen zur Geochemie des Bariums. Chemie der Erde, 8:508600.Google Scholar
Odum, H. T. 1951. Notes on the strontium content of sea water, celestite radiolaria, and strontianite snail shells. Science, 114:211213.Google Scholar
Odum, H. T. 1957. Biogeochemical deposition of strontium. Institute of Marine Science, 4:38114.Google Scholar
Owen, R. 1832. Memoir on the Pearly Nautilus (Nautilus pompilius, Linn.) with Illustrations of Its External Form and Internal Structure. Council of the Royal College of Surgeons in London, London, 68 p.Google Scholar
Pak, C. Y. C., Hayashi, Y., Finlayson, B., and Chu, S. 1977. Estimation of the state of saturation of brushite and calcium oxalate in urine: a comparison of three methods. Journal of Laboratory and Clinical Medicine, 89:891901.Google Scholar
Petit, H., Davis, W. L., Jones, R. G., and Hagler, H. K. 1980. Morphological studies on the calcification process in the freshwater mussel Amblema. Tissue and Cell, 12:1338.Google Scholar
Pingitore, N., and Eastman, M. P. 1986. The coprecipitation of Sr2+ with calcite at 25°C and 1 atm. Geochimica et Cosmochimica Acta, 50:21952203.Google Scholar
Price, N. B., and Hallam, A. 1967. Variation of strontium content within shell of recent Nautilus and Sepia. Nature (London), 215:12721274.Google Scholar
Rhodes, D. C., and Lutz, R. A. 1980. Skeletal records of environmental change, p. 119. In Rhoads, D. C., and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms. Plenum Press, New York.Google Scholar
Robertson, W. G. D. 1982. The solubility concept, p. 521. In Nancollas, G. H. (ed.), Biological Mineralization and Demineralization. Springer-Verlag, Berlin.Google Scholar
Rosenberg, G. D. 1980. An ontogenetic approach to the environmental significance of bivalve shell chemistry, p. 133168. In Rhoads, D. C. and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms. Plenum Press, New York.Google Scholar
Rucker, J. B., and Valentine, J. W. 1961. Salinity response of trace element concentration in Crassostrea virginica. Nature, 190:10991100.Google Scholar
Saunders, W. B. 1981. The species of living Nautilus and their distribution. Veliger, 24:824.Google Scholar
Saunders, W. B. 1983. Natural rates of growth and longevity of Nautilus belauensis. Paleobiology 9:280288.Google Scholar
Saunders, W. B. 1987. The species of Nautilus, p. 3552. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus: The Biology and Paleobiology of a Living Fossil. Plenum Press, New York.Google Scholar
Saunders, W. B., and Davis, L. E. 1985. A preliminary report on Nautilus in Papua New Guinea. Science in New Guinea, 11:6069.Google Scholar
Saunders, W. B., Davis., L. E., and Knight, R. L. 1987. Sympatric species of Nautilus pompilius and Nautilus scrobiculatus in the Admiralty Islands, Papua New Guinea. The Nautilus, 101:9399.Google Scholar
Saunders, W. B., and Landman, N. H. (eds.). 1987. Nautilus: The Biology and Paleobiology of a Living Fossil. Plenum Press, New York, 632 p.Google Scholar
Saunders, W. B., and Ward, P. D. 1987. Ecology, distribution and population characteristics of Nautilus, p. 136162. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus: The Biology and Paleobiology of a Living Fossil. Plenum Press, New York.Google Scholar
Schifano, G. 1984. Environmental, biological and mineralogical controls of strontium incorporation into skeletal carbonates in some intertidal gastropod species. Palaeogeography, Palaeoclimatology, Palaeoecology, 46:303312.Google Scholar
Schopf, T. J. M. 1980. Paleooceanography. Harvard University Press, Cambridge, 341 p.Google Scholar
Smith, S. V., Buddemeier, R. W., Redalje, R. C., and Houck, J. G. 1979. Strontium-calcium thermometry on coral skeletons. Science, 204:404407.Google Scholar
Sowerby, G. B. 1849. Monograph of the genus Nautilus. Thesaurus Conchyliorum, 2:463465.Google Scholar
Swart, P. K. 1981. The strontium, magnesium and sodium composition of scleractinian coral skeletons as standards for paleoenvironmental analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 34:115136.Google Scholar
Thompson, T. G., and Chow, T. J. 1955. The strontium-calcium atom ratio in carbonate-secreting marine organisms, p. 2039. In Papers in Marine Biology and Oceanography, Deep Sea Research Supplement to Volume 3. Pergamon Press, London.Google Scholar
Vinogradov, A. P. 1945. Geochemistry and biochemistry. Uspekhi Khimii, 7:639686.Google Scholar
Wada, K., and Fujinuki, T. 1976. Biomineralization in bivalve molluscs with emphasis on the chemical composition of the extrapallial fluid, p. 175190. In Watabe, N. and Wilbur, K. M. (eds.), The Mechanisms of Mineralization in the Invertebrates and Plants. University of South Carolina Press, Columbia.Google Scholar
Ward, P. D. 1987. The Natural History of Nautilus. Allen and Unwin, London, 267 p.Google Scholar
Ward, P. D. 1988. In Search of Nautilus. Simon and Schuster, New York, 238 p.Google Scholar
Ward, P. D., Carlson, B., Weekley, M., and Brumbaugh, B. 1984. Remote telemetry of daily vertical and horizontal movement of Nautilus in Palau. Nature, 309:248250.Google Scholar
Ward, P. D., and Chamberlain, J. A. 1983. Radiographic observation of chamber formation in Nautilus pompilius. Nature, 304:5759.Google Scholar
Ward, P. D., Greenwald, L., and Magnier, Y. 1981. The chamber formation cycle in Nautilus macromphalus. Paleobiology, 7:481493.Google Scholar
Weber, J. N. 1973. Incorporation of strontium into reef coral skeletal carbonate. Geochemica et Cosmochimica Acta, 37:21732190.Google Scholar
Weber, J. N. 1974. Skeletal chemistry of scleractinian reef corals: uptake of magnesium from sea water. American Journal of Science, 274:8493.Google Scholar
Wilbur, K. M. 1972. Shell formation in molluscs, p. 103145. In Florkin, M. and Scheer, B. T. (eds.), Chemical Zoology, Vol. VII, Molluscs. Academic Press, New York.Google Scholar
Wilbur, K. M. and Saleudin, A. S. M. 1983. Shell formation, p. 236287. In Wilbur, K. M. and Saleudin, A. S. M. (eds.), The Molluscs. Academic Press, New York.Google Scholar
Willey, A. 1902. Contribution to the natural history of the pearly nautilus, p. 691830. In Zoological Results Based on Material from New Britain, New Guinea, Loyalty Islands and Elsewhere, Collected During the Years 1895, 1896, and 1897. Cambridge University Press, Cambridge.Google Scholar
Wilson, T. R. S. 1975. Salinity and the major elements of sea water, p. 365414. In Riley, J. P. and Skirrow, G. (eds.), Chemical Oceanography, Vol. I. Academic Press, London.Google Scholar
Woodruff, D. S., Carpenter, M. P., Saunders, W. B., and Ward, P. D. 1987. Genetic variation and phylogeny in Nautilus, p. 6583. In Saunders, W. B. and Landman, N. H. (eds.), Nautilus: The Biology and Paleobiology of a Living Fossil. Plenum Press, New York.Google Scholar
Zolotarev, V. N. 1974. Magnesium and strontium in the shell calcite of some modern pelecypods. Geochemistry International, 11:347353.Google Scholar