Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T08:02:51.725Z Has data issue: false hasContentIssue false

Patterns of calibration age sensitivity with quartet dating methods

Published online by Cambridge University Press:  20 May 2016

Christopher A. Brochu*
Affiliation:
Department of Geoscience, University of Iowa, Iowa City 52242,

Abstract

Because more than one calibration is used, quartet dating (a molecular dating method) is thought to reduce error that might arise from a single calibration point. Within crocodylians, there is a strong correlation between calibration age and divergence estimate for five mitochondrial genes and one nuclear gene—estimates based on two Neogene calibrations are all younger than those based on two Paleogene calibrations, and estimates based on one Neogene and one Paleogene calibration are of intermediate age. Confidence limits on the youngest estimates exclude the oldest estimates, and in several cases they exclude known minimum divergences from fossil occurrences. Addition of time to the calibrations improves among-quartet and stratigraphic consistency, but not all kinds of modifications have the same impact; addition of uniform blocks of time to all calibrations efficiently increases among-quartet consistency, but with range extensions that more than double some of the Neogene calibrations. Modest increases in calibration age disproportionately impact divergence estimates based on later calibrations. Some among-quartet disparity might reflect calibration error, especially among caimans, but some range extensions necessary to improve consistency are unreasonably long. Quartet dating appears to systematically undercompensate branch length error with late calibrations and overcompensate it with early calibrations, but in all cases very reasonable results—alligatorid-crocodylid divergence in the Late Cretaceous and Alligator-caiman divergence at or near the Cretaceous-Tertiary boundary—are obtained when both a Neogene and a Paleogene calibration is used. This suggests that, given current likelihood models, the use of calibrations sampling different parts of a clade's history is the best strategy when using quartet dating.

Type
Selected Papers from the Sixth North American Paleontological Convention
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adkins, R. M., Walton, A. H., and Honeycutt, R. 2003. Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes. Molecular Phylogenetics and Evolution, 26:409420.Google Scholar
Arbogast, B. S., Edwards, S. V., Wakeley, J., Beerli, P., and Slowinski, J. B. 2002. Estimating divergence times from molecular data on phylogenetic and population genetic time scales. Annual Review of Ecology and Systematics, 33:707740.Google Scholar
Archibald, J. D., and Deutschman, D. H. 2001. Quantitative analysis of the timing of the origin and diversification of extant placental orders. Journal of Mammalian Evolution, 8:107124.Google Scholar
Arnason, U., Gullberg, A., and Janke, A. 1998. Molecular timing of primate divergences as estimated by two nonprimate calibration points. Journal of Molecular Evolution, 47:718727.Google Scholar
Benton, M. J. 1998. Molecular and morphological phylogenies of mammals: congruence with stratigraphic data. Molecular Phylogenetics and Evolution, 9:398407.CrossRefGoogle ScholarPubMed
Benton, M. J. 2001. Early origins of modern birds and mammals: molecules vs. morphology. BioEssays, 21:10431051.3.0.CO;2-B>CrossRefGoogle Scholar
Brochu, C. A. 1997. Morphology, fossils, divergence timing, and the phylogenetic relationships of Gavialis. Systematic Biology, 46:479522.Google Scholar
Brochu, C. A. 1999. Phylogeny, systematics, and historical biogeography of Alligatoroidea. Society of Vertebrate Paleontology Memoir, 6:9100.CrossRefGoogle Scholar
Brochu, C. A. 2000. Phylogenetic relationships and divergence timing of Crocodylus based on morphology and the fossil record. Copeia, 2000:657673.CrossRefGoogle Scholar
Brochu, C. A. 2001. Congruence between physiology, phylogenetics, and the fossil record on crocodylian historical biogeography, p. 928. In Grigg, G., Seebacher, F., and Franklin, C. E. (eds.), Crocodilian Biology and Evolution. Surrey Beatty and Sons, Sydney.Google Scholar
Brochu, C. A. 2003. Phylogenetic approaches toward crocodylian history. Annual Review of Earth and Planetary Sciences, 31:357397.Google Scholar
Brochu, C. A.In press. Alligatorine phylogeny and the status of Allognathosuchus Mook, 1921. Journal of Vertebrate Paleontology.Google Scholar
Brochu, C. A., and Densmore, L. D. 2001. Crocodile phylogenetics: a review of current progress, p. 38. In Grigg, G., Seebacher, F., and Franklin, C. E. (eds.), Crocodilian Biology and Evolution. Surrey Beatty and Sons, Sydney.Google Scholar
Brochu, C. A., Theodor, J. M., and Sumrall, C. D.In review. When clocks collide: estimating divergence time from molecules and the fossil record. Journal of Paleontology.Google Scholar
Bromham, L., and Hendy, M. D. 2000. Can fast early rates reconcile molecular dates with the Cambrian explosion? Proceedings of the Royal Society of London B, 267:10411047.Google Scholar
Bromham, L., Phillips, M. J., and Penny, D. 1999. Growing up with dinosaurs: molecular dates and the mammalian radiation. Trends in Ecology and Evolution, 14:113118.Google Scholar
Bromham, L., Penny, D., Rambaut, A., and Hendy, M. D. 2000. The power of relative rate tests depends on the data. Journal of Molecular Evolution, 50:296301.Google Scholar
Bromham, L., Rambaut, A., Fortey, R., Cooper, A., and Penny, D. 1998. Testing the Cambrian explosion hypothesis by using a molecular dating technique. Proceedings of the National Academy of Sciences of the USA, 95:1238612389.Google Scholar
Bryant, L. J. 1989. Non-dinosaurian lower vertebrates across the Cretaceous-Tertiary Boundary in northeastern Montana. University of California Publications in Geological Sciences, 134:1107.Google Scholar
Buckley, G. A., Brochu, C. A., Krause, D. W., and Pol, D. 2000. A pug-nosed crocodyliform from the Late Cretaceous of Madagascar. Nature, 405:941944.Google Scholar
Buscalioni, A. D., Ortega, F., and Vasse, D. 1997. New crocodiles (Eusuchia: Alligatoroidea) from the Upper Cretaceous of southern Europe. Comptes Rendus de l'Academie des Sciences de Paris, Sciences de la Terre et des Planétes, 325:525530.Google Scholar
Buscalioni, A. D., Ortega, F., Weishampel, D. B., and Jianu, C. M. 2001. A revision of the crocodyliform Allodaposuchus precedens from the Upper Cretaceous of the Hateg Basin, Romania. Its relevance in the phylogeny of Eusuchia. Journal of Vertebrate Paleontology, 21:7486.Google Scholar
Carvalho, I. S., and Bertini, R. J. 1999. Mariliasuchus: um novo Crocodylomorpha (Notosuchia) do Cretáceo da Bacia Bauru, Brasil. Geología Colombiana, 24:83105.Google Scholar
Clark, J. M. 1994. Patterns of evolution in Mesozoic Crocodyliformes, p. 8497. In Fraser, N. C. and Sues, H.-D. (eds.), In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods. Cambridge University Press, New York.Google Scholar
Clark, J. M., and Norell, M. A. 1992. The Early Cretaceous crocodylomorph Hylaeochampsa vectiana from the Wealden of the Isle of Wight. American Museum Novitates, 3032:119.Google Scholar
Conroy, C. J., and van Tuinen, M. 2003. Extracting time from phylogenies: positive interplay between fossil and genetic data. Journal of Mammalogy, 84:444455.Google Scholar
Cooper, A., and Penny, D. 1997. Mass survival of birds across the Cretaceous-Tertiary Boundary. Science, 275:11091113.Google Scholar
Corneli, P. S. 2003. Complete mitochondrial genomes and eutherian evolution. Journal of Mammalian Evolution, 9:281305.CrossRefGoogle Scholar
Delgado, S., Casane, D., Bonnaud, L., Laurin, M., Sire, J.-Y., and Girondot, M. 2001. Molecular evidence for Precambrian origin of amelogenin, the major protein of vertebrate enamel. Molecular Biology and Evolution, 18:21462153.Google Scholar
Densmore, L. D. 1983. Biochemical and immunological systematics of the order Crocodilia, p. 397465. In Hecht, M. K., Wallace, B., and Prance, G. H. (eds.), Evolutionary Biology. Volume 16. Plenum Press, New York.Google Scholar
Densmore, L. D., and Owen, R. D. 1989. Molecular systematics of the order Crocodilia. American Zoologist, 29:831841.Google Scholar
Densmore, L. D., and White, P. S. 1991. The systematics and evolution of the Crocodilia as suggested by restriction endonuclease analysis of mitochondrial and nuclear ribosomal DNA. Copeia, 1991:602615.CrossRefGoogle Scholar
Dyke, G. J. 2001. The evolutionary radiation of modern birds: systematics and patterns of diversification. Geological Journal, 36:305315.Google Scholar
Easteal, S. 2001. Molecular evidence for the early divergence of placental mammals. BioEssays, 21:10521058.3.0.CO;2-6>CrossRefGoogle Scholar
Eizirik, E., Murphy, W. J., and O'Brien, S. J. 2001. Molecular dating and biogeography of the early placental mammal radiation. Journal of Heredity, 92:212219.Google Scholar
Feduccia, A. 1995. Explosive radiation in Tertiary birds and mammals. Science, 267:637638.Google Scholar
Felsenstein, J. 2003. Inferring Phylogenies. Sinauer Associates, Sunderland, Massachusetts, 580 p.Google Scholar
Gasparini, Z. 1996. Biogeographic evolution of the South American crocodilians. Münchner Geowissenschaftliche Abhandlungen, 30:159184.Google Scholar
Gatesy, J., Salle, R. d., and Wheeler, W. 1993. Alignment-ambiguous nucleotide sites and the exclusion of systematic data. Molecular Phylogenetics and Evolution, 2:152157.Google Scholar
Gatesy, J., Amato, G., Norell, M., DeSalle, R., and Hayashi, C. 2003. Combined support for wholesale taxic atavism in gavialine crocodylians. Systematic Biology, 52:403422.Google Scholar
Gingerich, P. D. 1986. Temporal scaling of molecular evolution in primates and other mammals. Molecular Biology and Evolution, 3:205221.Google Scholar
Glazko, G. V., and Nei, M. 2003. Estimation of divergence times for major lineages of primate species. Molecular Biology and Evolution, 20:424434.Google Scholar
Graybeal, A. 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Systematic Biology, 47:917.Google Scholar
Haring, E., Kruckenhauser, L., Gamauf, A., Riesing, M. J., and Pinsker, W. 2001. The complete sequence of the mitochondrial genome of Buteo buteo (Aves, Accipitridae) indicates an early split in the phylogeny of raptors. Molecular Biology and Evolution, 18:18921904.Google Scholar
Härlid, A., Janke, A., and Arnason, U. 1998. The complete mitochondrial genome of Rhea americana and early avian divergences. Journal of Molecular Evolution, 46:669679.CrossRefGoogle ScholarPubMed
Hasegawa, M., Kishino, H., and Yano, T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 21:160174.Google Scholar
Hass, C. A., Hoffman, M. A., Densmore, L. D., and Maxson, L. R. 1992. Crocodilian evolution: insights from immunological data. Molecular Phylogenetics and Evolution, 1:193201.CrossRefGoogle ScholarPubMed
Holland, S. M., and Patzkowsky, M. E. 2002. Stratigraphic variation in the timing of first and last occurrences. Palaios, 17:134146.Google Scholar
Hua, S., and Jouve, S.In press. A primitive gavialoid from the Paleocene of Morocco. Journal of Vertebrate Paleontology.Google Scholar
Huchon, D., Catzeflis, F. M., and Douzery, E. J. P. 2000. Variance of molecular datings, evolution of rodents and the phylogenetic affinities between Ctenodactylidae and Hystricognathi. Proceedings of the Royal Society of London B, 267:393402.Google Scholar
Huchon, D., Madsen, O., Sibbald, M. J. J. B., Ament, K., Stanhope, M. J., Catzeflis, F. M., de Jong, W. W., and Douzery, E. J. P. 2002. Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Molecular Biology and Evolution, 19:10531065.CrossRefGoogle Scholar
Huelsenbeck, J. P., Larget, B., and Swofford, D. L. 2000. A compount Poisson process for relaxing the molecular clock. Genetics, 154:18791892.Google Scholar
Kawashita, S. Y., Sanson, G. F. O., Fernandes, O., Zingales, B., and Briones, M. R. S. 2001. Maximum-likelihood divergence date estimates based on rRNA gene sequences suggest two scenarios of Trypanosoma cruzi intraspecific evolution. Molecular Biology and Evolution, 18:22502259.Google Scholar
Langston, W. 1965. Fossil crocodilians from Colombia and the Cenozoic history of the Crocodilia in South America. University of California Publications in Geological Sciences, 52:1152.Google Scholar
Lee, M. S. Y. 1999. Molecular clock calibrations and metazoan divergence dates. Journal of Molecular Evolution, 49:385391.CrossRefGoogle ScholarPubMed
Malone, B. 1979. The systematics, phylogeny and paleobiology of the genus Alligator. Ph.D. dissertation, City University of New York, 159 p.Google Scholar
Markwick, P. J. 1998. Crocodilian diversity in space and time: the role of climate in paleoecology and its implication for understanding K/T extinctions. Paleobiology, 24:470497.Google Scholar
Marshall, C. R. 1990a. Confidence intervals on stratigraphic ranges. Paleobiology, 16:110.Google Scholar
Marshall, C. R. 1990b. The fossil record and estimating divergence times between lineages: maximum divergence times and the importance of reliable phylogenies. Journal of Molecular Evolution, 30:400408.Google Scholar
Marshall, C. R. 1997. Confidence intervals on stratigraphic ranges with nonrandom distributions of fossil horizons. Paleobiology, 23:165173.Google Scholar
Medina, C. J. 1976. Crocodilians from the Late Tertiary of northwestern Venezuela: Melanosuchus fisheri sp. nov. Breviora, 438:114.Google Scholar
Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.Google Scholar
Nei, M., Xu, P., and Glazko, G. V. 2001. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proceedings of the National Academy of Sciences of the U. S. A., 98:24972502.CrossRefGoogle ScholarPubMed
Norell, M. A. 1989. The higher level relationships of the extant Crocodylia. Journal of Herpetology, 23:325335.Google Scholar
Norman, J. E., and Ashley, M. V. 2000. Phylogenetics of Perissodactyla and tests of the molecular clock. Journal of Molecular Evolution, 50:1121.Google Scholar
Owen, R. 1850. Monograph on the Fossil Reptilia of the London Clay, and of the Bracklesham and Other Tertiary Beds, Part II: Crocodilia (Crocodilus, etc.). Paleontographical Society, London, 50 p.Google Scholar
Persson, P. O. 1960. Reptiles from the Senonian (U. Cret.) of Scania (S. Sweden). Arkiv för Mineralogi och Geologi, 2:431478.Google Scholar
Poe, S. 1997. Data set incongruence and the phylogeny of crocodilians. Systematic Biology, 45:393414.Google Scholar
Pol, D. 1999. Basal mesoeucrocodylian relationships: new clues to old conflicts. Journal of Vertebrate Paleontology, 19:69A.Google Scholar
Rambaut, A., and Bromham, L. 1998. Estimating divergence data from molecular sequences. Molecular Biology and Evolution, 15:442448.Google Scholar
Ray, D. A., and Densmore, L. D. 2002. The crocodilian mitochondrial control region: general structure, conserved sequences, and evolutionary implications. Journal of Experimental Zoology, 294:334346.Google Scholar
Ray, D. A., and Densmore, L. D. 2003. Repetitive sequences in the crocodilian mitochondrial control region: Poly-A sequences and heteroplasmic tandem repeats. Molecular Biology and Evolution, 20:10061013.Google Scholar
Ray, D. A., White, P. S., Duong, H. V., Cullen, T., and Densmore, L. D. 2001. High levels of genetic variability in West African dwarf crocodiles Osteolaemus tetraspis tetraspis, p. 5863. In Grigg, G., Seebacher, F., and Franklin, C. E. (eds.), Crocodilian Biology and Evolution. Surrey Beatty and Sons, Sydney.Google Scholar
Rodriguez-Trelles, F., Tarrio, R., and Ayala, F. J. 2002. A methodological bias toward overestimation of molecular evolutionary time scales. Proceedings of the National Academy of Sciences of the U. S. A., 99:81128115.Google Scholar
Salisbury, S. W., and Willis, P. M. A. 1996. A new crocodylian from the Early Eocene of southeastern Queensland and a preliminary investigation of the phylogenetic relationships of crocodyloids. Alcheringa, 20:179227.Google Scholar
Sanderson, M. J. 1997. A nonparametric approach to estimating divergence times in the absence of rate constancy. Molecular Biology and Evolution, 14:12181231.Google Scholar
Sanderson, M. J. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution, 19:101109.Google Scholar
Schwimmer, D. R. 2002. King of the Crocodylians: The Paleobiology of Deinosuchus. Indiana University Press, Bloomington, 220 p.Google Scholar
Sereno, P. C., Sidor, C. A., Larsson, H. C. E., and Gado, B. 2003. A new notosuchian from the Early Cretaceous of Niger. Journal of Vertebrate Paleontology, 23:477482.Google Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London, 356:351367.Google Scholar
Smith, A. B., and Peterson, K. J. 2002. Dating the time of origin of major clades: molecular clocks and the fossil record. Annual Review of Earth and Planetary Sciences, 30:6588.Google Scholar
Smith, A. B., Gale, A. S., and Monks, N. E. A. 2001. Sea-level change and rock record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology, 27:241253.Google Scholar
Snyder, D. 2003. New Alligator remains from the Miocene of Florida and notes on Alligator phylogeny. Journal of Vertebrate Paleontology, 23:99A.Google Scholar
Solow, A. R. 2003. Estimation of stratigraphic ranges when fossil finds are not randomly distributed. Paleobiology, 29:181185.Google Scholar
Soltis, P. S., Soltis, D. E., Savolainen, V., Crane, P. R., and Barraclough, T. G. 2002. Rate heterogeneity among lineages of tracheophytes: integration of molecular and fossil data and evidence for molecular living fossils. Proceedings of the National Academy of Sciences of the U. S. A., 99:44304435.CrossRefGoogle ScholarPubMed
Springer, M. S. 1995. Molecular clocks and the incompleteness of the fossil record. Journal of Molecular Evolution, 41:531538.Google Scholar
Springer, M. S. 1997. Molecular clocks and the timing of the placental and marsupial radiations in relation to the Cretaceous-Tertiary boundary. Journal of Mammalian Evolution, 4:285302.Google Scholar
Springer, M. S., Murphy, W. J., Eizirik, E., and O'Brien, S. J. 2003. Placental mammal diversification and the Cretaceous-Tertiary boundary. Proceedings of the National Academy of Sciences of the U. S. A., 100:10561061.Google Scholar
Springer, M. S., DeBry, R. W., Douady, C., Amrine, H. M., Madsen, O., de Jong, W. W., and Stanhope, M. J. 2001. Mitochondrial versus nuclear gene sequences in deep-level mammalian phylogeny reconstruction. Molecular Biology and Evolution, 18:132143.Google Scholar
Steel, M. A., Cooper, A. C., and Penny, D. 1996. Confidence intervals for the divergence time of two clades. Systematic Biology, 45:127134.CrossRefGoogle Scholar
Strauss, D., and Sadler, P. M. 1989. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology, 21:411427.Google Scholar
Stromer, E. 1925. Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens, II: Wirbeltier-Reste der Baharije-Stufe (Unterestes Cenoman), 7: Stomatosuchus inermis Stromer, ein schwach bezahnter Krokodilier. Abhandlungen der Bayerischen Akademie der Wissenshaften Mathematisch-naturvissenschaftliche Abteilung, 30:19.Google Scholar
Stromer, E. 1933. Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens. 12: Die Procölen Crocodilia. Abhandlungen der Bayerischen Akademie der Wissenshaften Mathematisch-naturvissenschaftliche Abteilung, N. F., 15:155.Google Scholar
Swinton, W. E. 1937. The crocodile of Maransart (Dollosuchus dixoni [Owen]). Mémoires du Musée Royal d'Histoire Naturelle de Belgique, 80:146.Google Scholar
Swofford, D. L., Olsen, G. J., Waddell, P. J., and Hillis, D. M. 1996. Phylogenetic inference, p. 407514. In Hillis, D. M., Moritz, C., and Mable, B. K. (eds.), Molecular Systematics (second edition). Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Thorne, J. L., and Kishino, H. 2002. Divergence time and evolutionary rate estimation with multilocus data. Systematic Biology, 51:689702.Google Scholar
Thorne, J. L., Kishino, H., and Painter, I. S. 1998. Estimating the rate of evolution of the rate of molecular evolution. Molecular Biology and Evolution, 15:16471657.Google Scholar
van Tuinen, M., Sibley, C. G., and Hedges, S. B. 2000. The early history of modern birds inferred from DNA sequences of nuclear and mitochondrial ribosomal genes. Molecular Biology and Evolution, 17:451457.Google Scholar
Waddell, P. J., Cao, Y., Hasegawa, M., and Mindell, D. P. 1999. Assessing the Cretaceous superordinal divergence times within birds and placental mammals by using whole mitochondrial protein sequences and an extended statistical framework. Systematic Biology, 48:119137.Google Scholar
Wayne, R. K., Van Valkenburgh, B., and O'Brien, S. J. 1991. Molecular distance and divergence time in carnivores and primates. Molecular Biology and Evolution, 8:297319.Google ScholarPubMed
White, P. S., and Densmore, L. D. 2001. DNA sequence alignments and data analysis methods: their effect on the recovery of crocodylian relationships, p. 2937. In Grigg, G., Seebacher, F., and Franklin, C. E. (eds.), Crocodilian Biology and Evolution. Surrey Beatty and Sons, Sydney.Google Scholar
Williamson, T. E. 1996. ?Brachychampsa sealeyi, sp. nov., (Crocodylia, Alligatoroidea) from the Upper Cretaceous (lower Campanian) Menefee Formation, northwestern New Mexico. Journal of Vertebrate Paleontology, 16:421431.Google Scholar
Willis, P. M. A., Molnar, R. E., and Scanlon, J. D. 1993. An early Eocene crocodilian from Murgon, southeastern Queensland. Kaupia, 3:2733.Google Scholar
Wray, G. A. 2001. Dating branches on the Tree of Life using DNA. Genome Biology, 3:17.Google Scholar
Wu, X.-C., Russell, A. P., and Brinkman, D. B. 2001. A review of Leidyosuchus canadensis Lambe, 1907 (Archosauria: Crocodylia) and an assessment of cranial variation based upon new material. Canadian Journal of Earth Sciences, 38:16651687.Google Scholar
Yoder, A. D., and Yang, Z. 2000. Estimation of primate speciation dates using local molecular clocks. Molecular Biology and Evolution, 17:10811090.CrossRefGoogle ScholarPubMed