Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T12:04:30.654Z Has data issue: false hasContentIssue false

Patterns and processes of heterochrony in lower Tertiary turritelline gastropods, U.S. Gulf and Atlantic Coastal Plains

Published online by Cambridge University Press:  20 May 2016

Warren D. Allmon*
Affiliation:
Paleontological Research Institution, 1259 Trumansburg Road, Ithaca, New York 14850

Abstract

Heterochrony is an important component of evolutionary change in the shell sculpture of turritelline gastropods from Paleocene and Eocene sediments of the Gulf and Atlantic Coastal Plains. A survey of heterochronic modes in these gastropods indicates that peramorphosis is dominant over paedomorphosis, a result counter to the pattern previously reported in gastropods and most other groups. Although lack of ontogenetic age data makes firm conclusions impossible at present, peramorphic patterns may have been produced by more than a single process. Possible explanations for the dominance of peramorphosis in the evolution of shell form in this group include a bigger role for intrinsic constraint in controlling shell form versus soft-part anatomy, selection for larger shell size, and the chance discovery of only peramorphosis in this study.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology, 5:296317.Google Scholar
Allison, R. C. 1965. Apical classification in turritellid classification with a description of Cristispira pugetensis gen. et sp. nov. Palaeontology, 8:666680.Google Scholar
Allison, R. C., and Adegoke, O. S. 1969. The Turritella rina group (Gastropoda) and its relationship to Torcula Gray. Journal of Paleontology, 43:12481266.Google Scholar
Allmon, W. D. 1987. Multiple modes of homeomorphy in Cenozoic turritellid gastropods and their evolutionary implications. Geological Society of America, Abstracts with Programs, 19:570.Google Scholar
Allmon, W. D. 1988. Ecology of living turritelline gastropods (Prosobranchia, Turritellidae): current knowledge and paleontological implications. Palaios, 3:259284.Google Scholar
Allmon, W. D. 1989. Paleontological completeness of the record of Paleogene mollusks, U.S. Gulf and Atlantic coastal plains: implications for phylogenetic studies. Historical Biology, 3:141158.Google Scholar
Allmon, W. D. 1992. Genera in paleontology. Definition and significance. Historical Biology, 6:149158.CrossRefGoogle Scholar
Allmon, W. D. 1994. Evolution and systematics of Cenozoic American Turritellidae (Gastropoda), I. Paleocene and Eocene species related to “Turritella mortoni Conrad” and “Turritella humerosa Conrad” from the U.S. Gulf and Atlantic coastal plains. Palaeontographica Americana (in press).Google Scholar
Allmon, W. D., and Dockery, D. T. 1992. A turritelline gastropoda-dominated bed in the Byram Formation (Oligocene) of Mississippi. Mississippi Geology, 13:2935.Google Scholar
Allmon, W. D., Jones, D. S., and Vaughan, N. 1992. Observations on the biology of Turritella gonostoma Valenciennes from the Gulf of California. The Veliger, 35:5263.Google Scholar
Allmon, W. D., Jones, D. S., Aiello, R. L., Gowlett-Holmes, K., and Probert, P. K. 1994a. Observations on the biology of Maoricolpus roseus (Quoy and Gaimard) (Prosobranchia: Turritellidae) from New Zealand and Tasmania. The Veliger (in press).Google Scholar
Allmon, W. D., Spizuco, M. P., and Jones, D. S. 1994b. Taphonomy and paleoenvironment of two turritellid gastropod-rich beds, Pliocene of Florida. Lethaia (submitted).Google Scholar
Allmon, W. D., Nieh, J. C., and Norris, R. D. 1990. Drilling and peeling of turritelline gastropods since the Late Cretaceous. Palaeontology, 33:595611.Google Scholar
Ambros, V. 1988. Genetic basis for heterochronic variation, p. 269286. In McKinney, M. (ed.), Heterochrony in Evolution. A Multidisciplinary Approach. Plenum Press, New York.Google Scholar
Andrews, H. 1974. Morphometries and functional morphology of Turritella mortoni. Journal of Paleontology, 48:11261140.Google Scholar
Atchley, W. 1987. Developmental quantitative genetics and the evolution of ontogenies. Evolution, 41:316330.Google Scholar
Barbault, R. 1987. Body size, ecological constraints, and the evolution of life-history strategies. Evolutionary Biology, 21:261286.Google Scholar
Batten, R. 1975. The Scissurellidae—are they neotenously derived fissurellids? (Archaeogastropoda). American Museum Novitates, 2567:137.Google Scholar
Bowles, E. 1939. Eocene and Paleocene Turritellidae of the Atlantic and Gulf coastal plain of North America. Journal of Paleontology, 13:267336.Google Scholar
Case, T. J. 1979. Optimal body size and an animal's diet. Acta Biotheoretica, 28:5469.Google Scholar
Chatterton, B. D. E., and Speyer, S. E. 1990. Applications of the study of trilobite ontogeny, p. 116136. In Mikulic, D. G. (ed.), Arthropod Paleobiology. Short Courses in Paleontology No. 3, The Paleontological Society.Google Scholar
Cheverud, J. M. 1982. Relationships among ontogenetic, static and evolutionary allometry. American Journal of Physical Anthropology, 59:139149.CrossRefGoogle ScholarPubMed
Cheverud, J. M. 1984. Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110:155171.Google Scholar
deBeer, G. 1958. Embryos and ancestors. Oxford University Press, Oxford.Google Scholar
Edgecombe, G. D., and Chatterton, B. D. E. 1987. Heterochrony in the Silurian radiation of encrinurine trilobites. Lethaia, 20:337351.Google Scholar
Elias, M. K. 1958. Late Mississippian fauna from the Redoak Hollow Formation of southern Oklahoma. Journal of Paleontology, 32:157.Google Scholar
Fenchel, T. 1974. Intrinsic rate of natural increase: the relationship with body size. Oecologia, 14:317326.Google Scholar
Fortey, R. A., and Jefferies, R. P. S. 1982. Fossils and phylogeny—a compromise approach, p. 197234. In Joysey, K. A. and Friday, A. E. (eds.), Problems of Phylogenetic Analysis. Academic Press, London.Google Scholar
Garstang, W. 1929. The origin and evolution of larval forms. British Association for the Advancement of Science Reports, 1928:7798.Google Scholar
Geary, D. H. 1988. Heterochrony in gastropods: a paleontological view, p. 183196. In McKinney, M. (ed.), Heterochrony in Evolution. A Multidisciplinary Approach. Plenum Press, New York.Google Scholar
Ghiselin, M. 1965. Reproductive function and the phylogeny of opisthobranch gastropods. Malacologia, 3:327378.Google Scholar
Ghiselin, M. 1966. The adaptive significance of gastropod torsion. Evolution, 20:337348.Google Scholar
Gingerich, P. D. 1979. Stratophenetic approach to phylogenetic reconstruction in vertebrate paleontology, p. 4178. In Cracraft, J. and Eldredge, N. (eds.), Phylogenetic Analysis and Paleontology. Columbia University Press, New York.CrossRefGoogle Scholar
Gingerich, P. D. 1990. Stratophenetics, p. 437442. In Briggs, D. E. G. and Crowther, P. R. (eds.), Paleobiology. A Synthesis. Blackwell Scientific, Oxford.Google Scholar
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews, 41:587640.Google Scholar
Gould, S. J. 1969. An evolutionary microcosm: Pleistocene and Recent history of the land snail P. (Poecilozonites) in Bermuda. Bulletin of the Museum of Comparative Zoology, 138:407532.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Harvard University Press, Cambridge, Massachusetts, 501 p.Google Scholar
Gould, S. J. 1982. Change in developmental timing as a mechanism of macroevolution, p. 333346. In Bonner, J. T. (ed.), Evolution and Development. Springer-Verlag, Berlin.Google Scholar
Gould, S. J. 1988. The uses of heterochrony, p. 113. In McKinney, M. (ed.), Heterochrony in Evolution. A Multidisciplinary Approach. Plenum Press, New York.Google Scholar
Govoni, D. L. 1983. Gastropod molluscs from the Brightseat Formation (Paleocene: Danian) of Maryland. Unpubl. , , Washington, D.C., 238 p.Google Scholar
Hallam, A. 1989. Heterochrony as an alternative to species selection in the generation of phyletic trends. Geobios, Memoire Special, 12:193198.CrossRefGoogle Scholar
Holm, E. 1985. The evolution of generalist and specialist species, p. 8793. In Vrba, E. (ed.), Species and Speciation. Transvaal Museum Monograph No. 4, Transvaal Museum, Pretoria.Google Scholar
Jones, D. S. 1988. Sclerochronology and the size versus age problem, p. 93108. In McKinney, M. (ed.), Heterochrony in Evolution. A Multidisciplinary Approach. Plenum Press, New York.Google Scholar
Kerth, K. 1979. Phylogenetische Aspekte der Radulamorphogenese van Gastropoden. Malacologia, 19:103108.Google Scholar
Kotaka, T. 1978. World-wide biostratigraphic correlation based on turritellid phylogeny. The Veliger, 21:189196.Google Scholar
LaBarbera, M. 1986. The evolution and ecology of body size, p. 6998. In Raup, D. M. and Jablonski, D. (eds.), Patterns and Processes in the History of Life. Springer Verlag, Berlin.Google Scholar
Lande, R. 1979. Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution, 33:402416.Google ScholarPubMed
Lande, R. 1985. Genetic and evolutionary aspects of allometry, p. 2132. In Jungers, W. L. (ed.), Size and Scaling in Primate Biology. Plenum Press, New York.Google Scholar
Landman, N. H. 1988. Heterochrony in ammonites, p. 159182. In McKinney, M. (ed.), Heterochrony in Evolution. A Multidisciplinary Approach. Plenum Press, New York.Google Scholar
Landman, N. H., Dommergues, J. L., and Marchand, D. 1991. The complex nature of progenetic species—examples from Mesozoic ammonites. Lethaia, 24:409421.Google Scholar
Lindberg, D. R. 1988. Heterochrony in gastropods: a neontological view, p. 197216. In McKinney, M. (ed.), Heterochrony in Evolution. A Multidisciplinary Approach. Plenum Press, New York.Google Scholar
Majima, R. 1985. Intraspecific variation in three species of Glossaulax (Gastropoda, Naticidae) from the late Cenozoic strata in central and southwest Japan. Transactions and Proceedings, Paleontological Society of Japan (n.s.), 138:111137.Google Scholar
Majima, R. and Murata, A. 1992. Intraspecific variation and heterochrony of Phanerolepida pseudotransenna Ozaki (Gastropoda: Turbinidae) from the Pliocene Nobori Formation, Pacific side of southwestern Japan. Transactions and Proceedings, Paleontological Society of Japan (n.s.), 165:10241039.Google Scholar
Marwick, J. 1957. Generic revision of the Turritellidae. Proceedings of the Malacological Society of London, 32:144166.Google Scholar
McKinney, M. L. 1984. Allometry and heterochrony in an Eocene echinoid lineage: morphological change as a by-product of size selection. Paleobiology, 10:407419.Google Scholar
McKinney, M. L. 1986. Ecological causation of heterochrony: test and implications for evolutionary theory. Paleobiology, 12:282289.Google Scholar
McKinney, M. L. (ed.). 1988a. Heterochrony in Evolution. A Multidisciplinary Approach. Plenum Press, New York, 348 p.Google Scholar
McKinney, M. L. 1988b. Classifying heterochrony. Allometry, size and time, p. 1734. In McKinney, M. (ed.), Heterochrony in Evolution. A Multidisciplinary Approach. Plenum Press, New York.CrossRefGoogle Scholar
McKinney, M. L., and McNamara, K. J. 1991. Heterochrony: The Evolution of Ontogeny. Plenum Press, New York, 437 p.Google Scholar
McKinney, M. L., McNamara, K. J., and Zachos, L. G. 1990. Heterochronic hierarchies: application and theory in evolution. Historical Biology, 3:269287.Google Scholar
McLean, J. 1984. A case of derivation of the Fissurellidae from the Bellerophontacea. Malacologia, 25:320.Google Scholar
McNamara, K. J. 1982. Heterochrony and phylogenetic trends. Paleobiology, 8:130142.Google Scholar
McNamara, K. J. 1988. The abundance of heterochrony in the fossil record, p. 287326. In McKinney, M. (ed.), Heterochrony in Evolution. A Multidisciplinary Approach. Plenum Press, New York.Google Scholar
Merriam, C. W. 1941. Fossil turritellas from the Pacific coast region of North America. University of California Publications in Geological Sciences, Bulletin, 26:1214.Google Scholar
Moor, B. 1983. Organogenesis, p. 123177. In Verdonk, N., van den Biggelaar, J. A. M., and Tompa, A. S. (eds.), The Mollusca. Volume 3. Development. Academic Press, New York.Google Scholar
Palmer, K. V. W. 1937. The Claibornian Scaphopoda, Gastropoda, and dibranchiate Cephalopoda of the southern United States. Bulletins of American Paleontology, 7(32) Pt. 1, 548 p., Pt. 2, 90 pls.Google Scholar
Raff, R. A., and Wray, G. A. 1989. Heterochrony: developmental mechanisms and evolutionary results. Journal of Evolutionary Biology, 2:409434.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology, 40:11781190.Google Scholar
Robertson, R. 1985. Archeogastropod biology and the systematics of the genus Tricolia (Trachacea: Tricoliidae) in the Indo-West-Pacific. Monographs of Marine Mollusca, 31:1103.Google Scholar
Schindel, D. E. 1990. Unoccupied morphospace and the coiled geometry of gastropods: architectural constraint or geometric covariation?, p. 270304. In Ross, R. M. and Allmon, W. D. (eds.), Causes of Evolution. A Paleontological Perspective. University of Chicago Press, Chicago.Google Scholar
Schmeckel, L. 1985. Aspects of evolution within the opisthobranchs, p. 221267. In Trueman, E. R. and Clarke, M. R. (eds.), The Mollusca. Volume 10. Evolution. Academic Press, New York.Google Scholar
Stanley, S. M. 1985. Rates of evolution. Paleobiology, 11:1326.Google Scholar
Swan, A. R. H. 1988. Heterochronic trends in Namurian ammonoid evolution. Palaeontology, 31:10331051.Google Scholar
Swan, A. R. H. 1989. (Review of)Heterochrony in evolution: a multidisciplinary approach. McKinney, M. L., ed. Historical Biology, 3:165168.Google Scholar
Thompson, D'A. W. 1942. On Growth and Form. Cambridge University Press, Cambridge, 1116 p.Google Scholar
Thorson, G. 1965. A neotenous dwarf-form of Capulus ungaricus (L.) (Gastropoda, Prosobranchia) commensalistic on Turritella communis Risso. Ophelia, 2:175210.Google Scholar
Tissot, B. N. 1988. Multivariate analysis, p. 3552. In McKinney, M. (ed.), Heterochrony in Evolution. A Multidisciplinary Approach. Plenum Press, New York.CrossRefGoogle Scholar
Toulmin, L. D. 1977. Stratigraphic distribution of Paleocene and Eocene fossils in the eastern Gulf Coast region. Alabama Geological Survey Monograph 13, 602 p.Google Scholar
Vermeij, G. J. 1978. Biogeography and Adaptation. Patterns of Marine Life. Harvard University Press, Cambridge, Massachusetts, 332 p.Google Scholar
Visser, M. H. C. 1988. The significance of terminal duct structures and the role of neoteny in the evolution of the reproductive system of Pulmonata. Zoologica Scripta, 17:239252.Google Scholar
Warén, A. 1983. A generic revision of the family Eulimidae (Gastropoda, Prosobranchia). Journal of Molluscan Studies Supplement, 13:196.Google Scholar