Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T03:26:51.767Z Has data issue: false hasContentIssue false

Parasitism of a new apiocrinitid crinoid species from the Middle Jurassic (Callovian) of southern Israel

Published online by Cambridge University Press:  14 July 2015

Mark A. Wilson
Affiliation:
Department of Geology, The College of Wooster, Wooster, OH 44691, USA, ;
Elizabeth A. Reinthal
Affiliation:
Department of Geology, The College of Wooster, Wooster, OH 44691, USA, ;
William I. Ausich
Affiliation:
and School of Earth Sciences, 155 South Oval Mall, The Ohio State University, Columbus, OH 43210, USA,

Abstract

A new species of Apiocrinites is described from the Matmor Formation (Middle Jurassic, upper Callovian) of Hamakhtesh Hagadol, southern Israel. Apiocrinites feldmani n. sp. is a small species associated with the larger A. negevensis in a calcareous sponge and coral patch reef community. During life the columns of A. feldmani were commonly and preferentially infested with a soft-bodied parasite that grew with the crinoid and became embedded in its skeleton. These parasites embedded at the articulation between columnals, forcing the columnals to grow around them and producing with time a conical pit surrounded by swollen stereom. If the parasite died while the crinoid was still growing, the conical pit was roofed over by continued growth of columnals, resulting in a swelling with no external opening. Because the crinoids invested energy in forming extra skeleton around these parasites and because the crinoid stems were consequently deformed and likely lost flexibility, we consider these parasites to have caused significant harm. Curiously, these parasites apparently did not infect the larger and more common contemporaneous A. negevensis that lived in the same community.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberhan, M., Kiessling, W., and Fürsich, F. T. 2006. Testing the role of biological interactions in the evolution of mid-Mesozoic marine benthic ecosystems. Paleobiology, 32:259277.Google Scholar
Ausich, W. I. and Bottjer, D. J. 1982. Tiering in suspension feeding communities on soft substrata throughout the Phanerozoic. Science, 216:173174.Google Scholar
Ausich, W. I., Brett, C. E., Hess, H., and Simms, M. J. 1999. Crinoid form and function, p. 330. In Hess, H., Brett, C. E., Ausich, W. I., and Simms, M. J. (eds.), Fossil Crinoids. Cambridge University Press, Cambridge, U.K. Google Scholar
Ausich, W. I. and Wilson, M. A. 2012. New Tethyan Apiocrinitidae (Crinoidea, Articulata) from the Jurassic of Israel. Journal of Paleontology, 86:1,0511,055.Google Scholar
Avni, Y. 2001. Structure and landscape evolution of the Makhteshim country—interrelations between monoclines, truncation surfaces and the evolution of the Makhteshim, p. 3358. In Krasnov, B. and Mazor, E. (eds.), Makhteshim Country: A Laboratory of Nature: Geological and Ecological Studies in the Desert Region of Israel. Pensoft Publishers, Sofia.Google Scholar
Brett, C. E. 1978. Host-specific pit-forming epizoans on Silurian crinoids. Lethaia, 11:217232.Google Scholar
Brett, C. E. 1985. Tremichnus: a new ichnogenus of circular-parabolic pits in fossil echinoderms. Journal of Paleontology, 59:625635.Google Scholar
Bromley, R. G. 1981. Concepts in ichnotaxonomy illustrated by small round holes in shells. Acta Geologica Hispanica, 16:5564.Google Scholar
Cariou, E. J. P., Bassoullet, L., Grossowicz, L., and Hirsch, F. 1997. Le Callovo−Oxfordien du Sud Levant: données biostratigraphiques nouvelle (ammonites, foraminifères) endémesme et corréations stratigraphiques. In Société géologique de France (ed.), Réunion Spécialisée APF−SGF “De la Biostratigraphie à la Paléobiogéographie”, Lyon, 21–28 novembre 1997: 21.Google Scholar
Defrance, J. L. M. 1819. Dictionnaire des Sciences Naturelles, 14, p. 467468. In Cuvier, M.F. (ed.), dir Le Nortmant, Paris. R.G. Levault, Strasbourg.Google Scholar
Donovan, S. and Jagt, J. 2003. Oichnus Bromley borings in the irregular echinoid Hemipneustes Agassiz from the type Maastrichtian (Upper Cretaceous, The Netherlands and Belgium). Ichnos, 9:6774.Google Scholar
Eeckhaut, I. 1998. Mycomyzostoma calcidicola gen. et sp. nov., the first extant parasitic myzostome infesting crinoid stalks, with a nomenclatural appendix by M. J. Grygier. Species Diversity, 3:89103.Google Scholar
Feldman, H. R. and Brett, C. E. 1998. Epi- and endobiontic organisms on Late Jurassic crinoid columns from the Negev Desert, Israel: Implications for co-evolution. Lethaia, 31:5771.Google Scholar
Feldman, H. R., Owen, E. F., and Hirsch, F. 2001. Brachiopods from the Jurassic (Callovian) of Hamakhtesh Hagadol (Kurnub Anticline), southern Israel. Palaeontology, 44:637658.Google Scholar
Feldman, H. R., Schemm-Gregory, M., Ahmad, F., and Wilson, M. A. 2012. Jurassic rhynchonellide brachiopods from the Jordan Valley. Acta Palaeontologica Polonica, 57:191204.Google Scholar
Gill, G. A., Thierry, J., and Tinant, H. 1985. Ammonites Calloviennes du sud d'Israel: systematique, biostratigraphie et paleobiogeographie. Geobios, 18:705751.Google Scholar
Goldberg, M. 1963. Reference section of Jurassic sequence in Hamakhtesh Hagadol (Kurnub Anticline). Detailed binocular sample description, including field observations. Israel Geological Survey, Unpublished Report, 50 p.Google Scholar
Goldring, R., Pollard, J. E., and Taylor, A. M. 1997. Naming trace fossils. Geological Magazine, 134:265268.Google Scholar
Golonka, J. 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381:35273.Google Scholar
Grossowicz, L. P., Bassoullet, J.-P., Hirsch, F., and Peri, M. 2000. Jurassic large Foraminifera from Israel. Geological Survey of Israel, Current Research, 12:132144.Google Scholar
Haq, B. U. and Al-Qahtani, A. M. 2005. Phanerozoic cycles of sea-level change on the Arabian Platform. GeoArabia, 10:127160.Google Scholar
Hess, H. 2010. Myzostome deformation on arms of the Early Jurassic crinoid Balanocrinus gracilis (Charlesworth). Journal of Paleontology, 84:1,0311,034.Google Scholar
Hess, H. and Messing, C. G. 2011. Articulata. In Seldon, P. (ed.) and Ausich, W. I. (Coordinating Author). Treatise on Invertebrate Paleontology, Part T, Revised, Volume 3. University of Kansas Paleontological Institute, Lawrence, Kansas.Google Scholar
Hirsch, F., Bassoullet, J.-P., Cariou, E., Conway, B., Feldman, H. R., Grossowicz, L., Honigstein, A., Owen, E. F., and Rosenfeld, A. 1998. The Jurassic of the southern Levant. Biostratigraphy, palaeogeography and cyclic events, p. 213235. In Carasquin-Soleau, S. and Barrier, É. (eds.), Peri-Tethys Memoir 4: Epicratonic Basins of Peri-Tethyan Platforms. Mémoires du Muséum national d'Histoire Naturelle, Paris, 179.Google Scholar
Hudson, R. G. S. 1958. The Upper Jurassic faunas of southern Israel. Geological Magazine, 95:415425.Google Scholar
Jangoux, M. 1987a. Diseases of Echinodermata. III. Agents metazoans (Annelida to Pisces). Diseases of Aquatic Organisms, 3:5983.Google Scholar
Jangoux, M. 1987b. Diseases of Echinodermata. IV. Structural abnormalities and general considerations on biotic diseases. Diseases of Aquatic Organisms, 3:221229.Google Scholar
Klompmaker, A. A., Karasawa, H., Portel, R. W., Fraaije, R. H. B., and Ando, Yusuke. 2013. An overview of predation evidence found on fossil decapod crustaceans with new examples of drill holes attributed to gastropods and octopods. PALAIOS, 28:599613.Google Scholar
Klompmaker, A. A., Artal, P., van Bakel, B. W. M., Fraaije, R. H. B., and Jagt, J. W. M. 2014. Parasites in the fossil record: A Cretaceous fauna with isopod-infested decapod crustaceans, infestation patterns through time, and a new ichnotaxon. PLoS ONE 9 (3):e92551. doi: 10.1371/journal.pone.0092551 CrossRefGoogle Scholar
Kobluk, D. R. and Noor, I. 1990. Coral microatolls and a probable Middle Ordovician example. Journal of Paleontology, 64:3943.Google Scholar
Krawczynski, C. and Wilson, M. A. 2011. The first Jurassic thecideide brachiopods from the Middle East: A new species of Moorellina from the upper Callovian of Hamakhtesh Hagadol, southern Israel. Acta Geologica Polonica, 61:7177.Google Scholar
Leinfelder, R. R., Schlagintweit, F., Werner, W., Ebli, O., Nose, M., Schmid, D. U., and Hughes, G. W. 2005. Significance of stromatoporoids in Jurassic reefs and carbonate platforms concepts and implications. Facies, 51:288326.Google Scholar
Miller, J. S. 1821. A natural history of the Crinoidea, or lily-shaped animals; with observations on the genera, Asteria, Euryale, Comatula and Marsupites . Bryan and Co., Bristol, England, 150 p.Google Scholar
Nielsen, K. S. S. and Nielsen, J. K. 2001. Bioerosion in Pliocene to late Holocene tests of benthic and planktonic foraminiferans, with a revision of the ichnogenera Oichnus and Tremichnus . Ichnos, 8:99116.Google Scholar
Orbigny, A. D., d'. 18401841. Histoire naturelle, génerale et particulière, des Crinoïdes, vivants et fossiles, comprenant la description zoologique et géologique de ces animaux. Published by the author, Paris, 98 p.Google Scholar
Palmer, T. J. and Wilson, M. A. 1998. Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology, 31:939949.Google Scholar
Pandey, D. K., Ahmad, F., and Fürsich, F. T. 2000. Middle Jurassic scleractinian corals from northwestern Jordan. Beringeria, 27:329.Google Scholar
Pickerill, R. K. and Donovan, S. K. 1998. Ichnology of the Pliocene Bowden shell bed, southeast Jamaica. In Donovan, S. K. (ed.), The Pliocene Bowden shell bed, southeast Jamaica. Contributions to Tertiary and Quaternary Geology, 35:161175.Google Scholar
Schlotheim, E. F., von. 1820. Die Petrefactenkunde auf ihrem jezigen Standpunkte durch die Beschreibung seiner Sammlung versteinerter und fossiler Überreste des Their-und Pflanzenreichs der Vorwelt erläutert. Beckersche Buchhandlung, Gotha, 437 p.Google Scholar
Sharland, P. R., Casey, D. M., Davies, R. B., Simmons, M. D., Sutcliffe, M. D., and O. E. 2004. Arabian Plate sequence stratigraphy. GeoArabia, 9:199214.Google Scholar
Sieverts-Doreck, H. 1952. Millericrinida, p. 614, In Moore, R. C., Lalicker, C. and Fischer, A. G. (eds.), Invertebrate Fossils, McGraw-Hill, New York.Google Scholar
Ubaghs, G. 1978. Skeletal morphology of fossil crinoids, p. T58T216. In Moore, R. C. and Teichert, K. (eds.), Treatise on Invertebrate Paleontology, Echinodermata, Pt. T(2). Geological Society of America and University of Kansas Press, Boulder and Lawrence.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology, 3:245258.Google Scholar
Vinn, O. and Wilson, M. A. 2010. Sabellid-dominated shallow water calcareous polychaete tubeworm association from the equatorial Tethys Ocean (Matmor Formation, Middle Jurassic, Israel). Neues Jahrbuch für Geologie und Paläontologie, 258:3138.Google Scholar
Welch, J. R. 1976. Phosphannulus on Paleozoic crinoid stems. Journal of Paleontology, 50:218225.Google Scholar
Wierzbowski, H., Dembicz, K., and Praszkier, T. 2009. Oxygen and carbon isotope composition of Callovian–lower Oxfordian (Middle–Upper Jurassic) belemnite rostra from central Poland: a record of a late Callovian global sea-level rise? Palaeogeography, Palaeoclimatology, Palaeoecology, 283:182194.Google Scholar
Wilson, M. A., Feldman, H. R., Bowen, J. C., and Avni, Y. 2008. A new equatorial, very shallow marine sclerozoan fauna from the Middle Jurassic (late Callovian) of southern Israel. Palaeogeography, Palaeoclimatology, Palaeoecology, 263:2429.Google Scholar
Wilson, M. A., Feldman, H. R., and Krivicich, E. B. 2010. Bioerosion in an equatorial Middle Jurassic coral-sponge reef community (Callovian, Matmor Formation, southern Israel). Palaeogeography, Palaeoclimatology, Palaeoecology, 289:93101.Google Scholar
Wood, R. 1987. Biology and revised systematics of some late Mesozoic stromatoporoids. Special Papers in Palaeontology, 37:189.Google Scholar
Wood, R. 1999. Reef Evolution. Oxford University Press, Oxford, U.K., 414 p.Google Scholar
Zatoń, M. and Vinn, O. 2011. Microconchids and the rise of modern encrusting communities. Lethaia, 44:57.Google Scholar
Zittel, K. A., von. 1879. Handbuch der Palaeontologie, Band 1, Palaeozoologie. R. Oldenbourg, München and Leipzig, Germany, 765 p.Google Scholar