Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T04:11:46.407Z Has data issue: false hasContentIssue false

Palliedaphichnium gondwanicum new ichnogenus new ichnospecies, a millipede trace fossil from paleosols of the upper Permian Gondwana sequence of India

Published online by Cambridge University Press:  27 May 2021

Deepa Agnihotri
Affiliation:
Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow226007, India , ,
Jorge F. Genise
Affiliation:
CONICET, Museo Argentino de Ciencias Naturales. División Icnología, Av. Ángel Gallardo 470, 1405Buenos Aires, Argentina
Anju Saxena
Affiliation:
Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow226007, India , ,
A.K. Srivastava*
Affiliation:
Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow226007, India , ,
*
*Former affiliation.

Abstract

The new invertebrate trace fossil from paleosols of the Bijori Formation, Palliedaphichnium gondwanicum new ichnogenus new ichnospecies, which belongs to an upper Permian Gondwana sequence of India, makes a significant contribution to the meager records of invertebrate trace fossils from Permian and Indian paleosols. This trace fossil attributed to Diplopoda and composed of tunnels and chambers filled with pellets is also an important addition to the scarce record of Permian millipedes. The abundance of plant remains in the same paleosol indicates that these millipedes probably fed on leaf litter as other fossil and extant representatives. Chambers and abundant pellets in burrows indicate adverse conditions on the surface, at least seasonally. This finding contributes to the emerging scenario of invertebrate ichnofaunas from paleosols and points to a successive dominance of millipedes during the Paleozoic, crayfishes and earthworms in the Mesozoic, and insects in the Cenozoic.

UUID: http://zoobank.org/4378c739-9bd1-4382-b084-e2176045e209

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, M., Arhens, D., Xing-Ke, Y., and Ren, D., 2012, New fossil evidence of the early diversification of scarabs: Alloioscarabaeus cheni (Coleoptera: Scarabaeoidea) from the Middle Jurassic of Inner Mongolia, China: Insect Science, v. 19, p. 159171.CrossRefGoogle Scholar
Bellairs, V., Bellairs, R., and Goel, S., 1983, Studies on an Indian polydesmoid millipede Streptogonopus phipsoni. Life cycle and swarming behavior of the larvae: Journal of Zoology, v. 199, p. 3150.CrossRefGoogle Scholar
Billings, E., 1862, New species of fossils from different parts of the lower, middle and upper Silurian rocks of Canada: Palaeozoic Fossils, Geological Survey of Canada, v. 1, p. 96168.Google Scholar
Bonkowski, N., Scheu, S., and Schaefer, M., 1998, Interactions of earthworms (Octolasion lacteum), millipedes (Glomeris marginata) and plants (Hordelymus europaeus) in a beechwood on a basalt hill: implications for litter decomposition and soil formation: Applied Soil Ecology, v. 9, p. 161166.CrossRefGoogle Scholar
Bowen, J., and Hembree, D., 2014, Neoichnology of two spirobolid millipedes: improving the understanding of the burrows of soil detritivores: Palaeontologia Electronica, 17.1.18A, 48 p., http://palaeo-electronica.org/content/2014/709-neoichnology-of-spirobolidsCrossRefGoogle Scholar
Bown, T.M., and Kraus, M.J., 1983, Ichnofossils of the alluvial Willwood Formation (lower Eocene), Bighorn Basin, Northwestern Wyoming, USA: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 43, p. 95128.CrossRefGoogle Scholar
Bradshaw, M.A., 1981, Palaeoenvironmental interpretations and systematics of Devonian trace fossils from the Taylor Group (Lower Beacon Supergroup), Antarctica: New Zealand Journal of Geology and Geophysics, v. 24, p. 615652.CrossRefGoogle Scholar
Causey, N.B., 1957, Floridobolus, a new milliped genus (Spirobolidae): Proceedings of the Biological Society of Washington, v. 70, p. 205208.Google Scholar
Chakraborty, T., and Sarkar, S., 2005, Evidence of lacustrine sedimentation in the upper Permian Bijori Formation, Satpura Gondwana basin: palaeogeographic and tectonic implications: Journal of Earth System Science, v. 114, p. 303323.CrossRefGoogle Scholar
Crookshank, H., 1936, Geology of the northern slopes of the Satpuras between the Morand and Sher rivers: Memoirs of the Geological Survey of India, v. 66, p. 173272.Google Scholar
Dangerfield, J.M., 1994, Ingestion of leaf litter by millipedes: the accuracy of laboratory estimates for predicting litter turnover in the field: Pedobiologia, v. 38, p. 262265.Google Scholar
David, J.F., 2014, The role of litter-feeding macroarthropods in decomposition process: a reappraisal of common views: Soil Biology and Biochemistry, v. 76, p. 109118.CrossRefGoogle Scholar
Edwards, D., Selden, P.A., and Axe, L., 2012, Selective feeding in an Early Devonian terrestrial ecosystem: Palaios, v. 27, p. 509522.CrossRefGoogle Scholar
Genise, J.F., 2004, Ichnotaxonomy and ichnostratigraphy of chambered trace fossils in palaeosols attributed to coleopterans, termites and ants, in McIlroy, D., ed., The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis: Geological Society of London Special Publications, v. 228, p. 419–453.CrossRefGoogle Scholar
Genise, J.F., 2016. Ichnoentomology: Insect Traces in Soils and Paleosols: New York, Springer, 695 p.Google Scholar
Genise, J.F., Bedatou, E., Bellosi, E.S., Sarzetti, L.C., Sánchez, M.V., and Krause, J.M., 2016, The Phanerozoic four revolutions and evolution of paleosol ichnofacies, in Buatois, L.A., and Mángano, M.A., eds, The Trace-Fossil Record of Major Evolutionary Events: Topics in Geobiology 40, v. 2, Berlin, Springer-Verlag, p. 301370.CrossRefGoogle Scholar
Genise, J.F., et al. , 2020, 100 Ma sweat bee nests: early and rapid co-diversification of crown bees and flowering plants: PLoS ONE, v. 15, n. e0227789, https://doi.org/10.1371/journal.pone.0227789CrossRefGoogle ScholarPubMed
Girard, C., 1853, Myriapods, in Marcy, R.B., Exploration of the Red River of Louisiana, in the year 1852: Washington, Robert Armstrong, Public Printer, p. 272275.Google Scholar
Golovatch, S.I., and Kime, R.D., 2009, Millipede (Diplopoda) distributions: a review: Soil Organism, v. 81, p. 565597.Google Scholar
Hall, J., 1847, Palaeontology of New York, Volume 1: Albany, C. Van Benthuysen, 338 p.CrossRefGoogle Scholar
Harris, T.M., and Rest, J.A., 1966, The flora of the Brora Coal: Geological Magazine, v. 103, p. 101109.CrossRefGoogle Scholar
Hembree, D.I., 2009, Neoichnology of burrowing millipedes: linking modern burrow morphology, organism behavior, and sediment properties to interpret continental ichnofossils: Palaios, v. 24, p. 425439.CrossRefGoogle Scholar
Hembree, D.I., 2019, Burrows and ichnofabric produced by centipedes: modern and ancient examples: Palaios, v. 34, p. 468489.CrossRefGoogle Scholar
Karamaouna, M., 1992, On the ecology of iulid millipede Symphyoilus impartitus (Karsch) in a Mediterranean pine forest of Greece: Berichte des Naturwissenschaftlich-medizinischen Verein in Innsbruk, v. 10, p. S191S196.Google Scholar
Lele, K.M., 1976, Palaeoclimatic implications of Gondwana flora: Geophytology, v. 6, p. 207229.Google Scholar
Maithy, P.K., 1977, Three new fern fronds from the Glossopteris flora of India: Palaeobotanist, v. 24, p. 96101.Google Scholar
Manum, S.B., Bose, M.N., and Sawyer, R.T., 1991, Clitellate cocoons in freshwater deposits since the Triassic: Zoologica Scripta, v. 20, p. 347366.CrossRefGoogle Scholar
Medlicott, H.B., 1873, Notes on Satpura Coal Basin: Memoirs of the Geological Survey of India, v. 10, 188 p.Google Scholar
Morrissey, L.B., and Braddy, S.J., 2004, Terrestrial trace fossils from the Lower Old Red Sandstone, southwest Wales: Geological Journal, v. 39, p. 315336.CrossRefGoogle Scholar
Mwabvu, T., 1998, Laboratory observation of the feeding behavior of a tropical millipede, Alloporus uncinatus (Attems): Journal of African Zoology, v. 112, p. 237240.Google Scholar
Mwabvu, T., 2017a, Descriptions of movement and burrow morphology of a tropical millipede, Spirostreptus heros Porat, 1872 (Diplopoda: Spirostreptida: Spirostreptidae) in the Kalahari Desert, South Africa: Journal of Entomology and Zoology Studies, v. 5, p. 327329.Google Scholar
Mwabvu, T., 2017b, Variation in soil content of faecal pellets of a tropical millipede, Doratogonus uncinatus (Attems, 1914) (Diplopoda, Spirostreptida, Spirostreptidae): African Journal of Ecology, https://doi.org/10.1111/aje.12486Google Scholar
Pal, P.K., Srivastava, A.K., and Ghosh, A.K., 2010, Plant fossils of Maitur Formation: possibly the ultimate stage of Glossopteris flora in Raniganj Coalfield, India: The Palaeobolanist, v. 59, p. 3345.Google Scholar
Palisot de Beauvois, A.M., 1805, Insectes recueillis en Afrique et en Amerique: Paris, Impr. de Fain et cie, p. 276 p.Google Scholar
Pascoe, E.H., 1959, Manual of Geology of India and Burma (third edition), Vol. 2: Calcutta, Government of India Press, p. 4851343.Google Scholar
Raja Rao, C.S., 1983, Coal Resources of Madhya Pradesh and Jammu and Kashmir: Coalfields of India, Vol. 3: Bulletins of the Geological Survey of India, ser. A, no. 45, 204 p.Google Scholar
Reboleira, A.S.P.S., and Enghoff, H., 2016, Mud and silk in the dark: a new type of millipede moulting chamber and first observations on the maturation moult in order Callipodida: Arthropod Structure and Development, v. 45, p. 301306.CrossRefGoogle ScholarPubMed
Retallack, G.J., 1976, Triassic palaeosols in the Upper Narrabeen Group of New South Wales. Part I: Features of the palaeosols: Journal of the Geological Society of Australia, v. 23, p. 383399.CrossRefGoogle Scholar
Retallack, G.J., 2001, Scoyenia burrows from Ordovician palaeosols of the Juniata Formation in Pennsylvania: Palaeontology, v. 44, p. 209235.CrossRefGoogle Scholar
Royle, J.F., 1839, Illustration of the botany and the other branches of Natural History of the Himalayan Mountains etc.: London, Wm. H. Allen, 472 p.Google Scholar
Sánchez, M.V., and Genise, J.F., 2009, Cleptoparasitism and detritivory in dung beetle fossil brood balls from Patagonia, Argentina: Palaeontology, v. 52, p. 837848.CrossRefGoogle Scholar
Shear, W.A., and Edgecombe, G.D., 2010, The geological record and phylogeny of the Myriapoda: Arthropod Structure and Development, v. 39, p. 174190.CrossRefGoogle ScholarPubMed
Sierwald, P., and Bond, J.E., 2007, Current status of the myriapod class Diplopoda (millipedes): taxonomic diversity and phylogeny: Annual Review of Entomology, v. 52, p. 401420.CrossRefGoogle ScholarPubMed
Srivastava, A.K., and Agnihotri, D., 2010, Upper Permian plant fossils assemblage of Bijori Formation: a case study of Glossopteris flora beyond the limit of Raniganj Formation: Journal of the Geological Society of India, v. 76, p. 4762.CrossRefGoogle Scholar
Srivastava, A.K., Saxena, A., and Agnihotri, D., 2009, Insect burrows from the upper Permian sequence of Bijori Formation of Satpura Gondwana Basin, India: Permophiles, v. 54, p. 1214.Google Scholar
Srivastava, A.K., Saxena, A., and Agnihotri, D., 2010, Trace fossils from the Barakar Formation (early Permian) of Satpura Gondwana Basin, Madhya Pradesh, India: Geophytology, v. 39, p. 1822.Google Scholar
Verde, M., Ubilla, M., Jimenez, J.J., and Genise, J.F., 2007, A new earthworm trace fossil from paleosols: aestivation chambers from the late Pleistocene Sopas Formation of Uruguay: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 243, p. 339347.CrossRefGoogle Scholar
Voigt, S., 2007, Tunnel-and-chamber burrows: evidence for fossorial behavior of insects in Permo–Carboniferous alluvial-plain deposits?, in Bromley, R.G., Buatois, L.A., Mángano, G., Genise, J.F., and Melchor, R.N., eds., Sediment–Organism Interactions: A Multifaceted Ichnology: Society for Sedimentary Geology Special Publication no. 58, p. 361–371.CrossRefGoogle Scholar
Voigt, S., Niedźwiedzki, G., Raczyński, P., Mastalerz, K., and Ptaszyński, T., 2012, Early Permian tetrapod ichnofauna from the Intra-Sudetic Basin, SW Poland: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 313–314, p. 173180.CrossRefGoogle Scholar
Youngsteadt, N.W., and McAllister, C.T., 2014, Natural history notes and new county records for Ozarkian millipeds (Arthropoda: Diplopoda) form Arkansas, Kansas and Missouri: Journal of Arkansas Academy of Science, v. 68, p. 177182.Google Scholar