Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-18T19:46:07.298Z Has data issue: false hasContentIssue false

Paleoecology of sublittoral Miocene echinoids from Sardinia: A case study for substrate controls of faunal distributions

Published online by Cambridge University Press:  11 April 2019

Andrea Mancosu
Affiliation:
Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Cagliari, Via Trentino 51, 09127 Cagliari, Italy
James H. Nebelsick
Affiliation:
Department of Geosciences, University of Tübingen, Hölderlinstrasse 12, D-72074 Tübingen, Germany

Abstract

A rich echinoid fauna within the middle Miocene carbonate sedimentary succession cropping out along the coast between Santa Caterina di Pittinuri and S'Archittu (central-western Sardinia) allows the comparison of faunal gradients and preservation potentials from both hard and soft substrata. Three echinoid assemblages are recognized. Faunal composition, as well as taphonomic and sedimentological features and functional morphological interpretation of the echinoid test indicate an outer sublittoral setting. Assemblage 1 represents a highly structured environment within the photic zone, with mobile substrata occupied by infaunal irregular echinoids, mainly spatangoids, and localized hard substrata, provided by rhodolith beds, with epibenthic regular echinoids represented by the co-occurrence of the diadematid Diadema Gray, 1825 and the toxopneustids Tripneustes L. Agassiz, 1841 and Schizechinus Pomel, 1869. Assemblage 2 shows a higher diversity of irregular echinoids, dominated by the clypeasteroids Echinocyamus van Phelsum, 1774 and Clypeaster Lamarck, 1801 and different spatangoids, with the minute trigonocidarid Genocidaris A. Agassiz, 1869 among regular echinoids. This assemblage points to a soft-bottom environment with moderate water-energy conditions, periodically affected by storms. A low-diversity echinoid fauna in Assemblage 3, dominated by the spatangoids Brissopsis L. Agassiz, 1840 and Ova Gray, 1825, documents a deeper, soft-bottom environment, possibly below storm-wave base. These results indicate that the diversity of echinoid faunas originating in sublittoral environments is related to: (1) the presence of both soft and hard substrata, (2) differential preservation potentials of the various echinoid taxa, (3) intense bioturbation, and (4) sediment deposition by sporadic storm events.

Type
Articles
Copyright
Copyright © 2019, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, A., 1863, List of echinoderms sent to different institutions in exchange for other specimens, with annotations: Bulletin of the Museum of Comparative Zoology at Harvard College, v. 1, p. 1728.Google Scholar
Agassiz, A., 1869, Preliminary report on the echini and star-fishes dredged in deep water between Cuba and the Florida Reef by L.F. De Pourtalès, Assist. U.S. Coast Survey: Bulletin of the Museum of Comparative Zoology at Harvard College, v. 1, p. 253308.Google Scholar
Agassiz, A., 1872, Preliminary notice of a few species of echini: Bulletin of the Museum of Comparative Zoölogy at Harvard College, v. 3, p. 5558.Google Scholar
Agassiz, L., 1836, Prodrome d'une monographie des Radiaires ou Échinodermes: Mémoires de la Société des Sciences Naturelles de Neuchâtel, v. 1, p. 168199.Google Scholar
Agassiz, L., 1840, Catalogus Systematicus Ectyporum Echinodermatum Fossilium Musei Neocomiensis, Secundum Ordinem Zoologicum Dispositus; Adjectis Synonymis Recentioribus, Nec Non Stratis et Locis in Quibus Reperiuntur: Sequuntur Characteres Diagnostici Generum Novorum Vel Minus Cognitorum: Neuchâtel, Switzerland, Petitpierre, 20 p.Google Scholar
Agassiz, L., 1841, Observations sur les progrés récens de l'histoire naturelle des échinodermes, in Agassiz, L., ed., Monographies d’Échinodermes Vivants et Fossiles: Neuchâtel, Switzerland, Petitpierre, 20 p.10.5962/bhl.title.126954Google Scholar
Agassiz, L., and Desor, P.J.E., 1846, Catalogue raisonné des familles, des genres, et des espèces de la classe des échinodermes: Annales des Sciences Naturelles, ser. 3, Zoologie, v. 6, p. 305374.Google Scholar
Agassiz, L., and Desor, P.J.E., 1847, Catalogue raisonné des familles, des genres, et des espèces de la classe des échinodermes: Annales des Sciences Naturelles, ser. 3, Zoologie, v. 8, p. 535.Google Scholar
Andrew, N.L., and Byrne, M., 2007, Ecology of Centrostephanus, in Lawrence, J.M., ed., Edible Sea Urchins: Biology and Ecology: Amsterdam, Elsevier Science, p. 191204.Google Scholar
Antoniadou, C., and Vafidis, D., 2014, Population ecology of common sea urchins (Arbacia lixula, Paracentrotus lividus, Sphaerechinus granularis) on algal-dominated rocky shore in the Aegean Sea, in Withmore, E., ed., Echinoderms: Ecology, Habitats and Reproductive Biology: New York, Nova Science Publishers, p. 147166.Google Scholar
Asgaard, U., and Bromley, R.G., 2007, Co-occurrence of schizasterid echinoids and trace fossil Scolicia, Pleistocene, Greece: Facts, myths, and fascioles, in Bromley, R.G., Buatois, L.A., Mángano, G., Genise, J.F., and Melchor, R.N., eds., Sediment-Organism Interactions: A Multifaceted Ichnology: SEPM Special Publications, v. 88, p. 85–94.Google Scholar
Assorgia, A., Barca, S., and Spano, C., 1997a, Lineamenti stratigrafici, tettonici e magmatici del Terziario della Sardegna, in Assorgia, A., Barca, S., and Spano, C., eds., Convegno-escursione: La ‘Fossa sarda’ Nell'Ambito Dell'Evoluzione Geodinamica Cenozoica del Mediterraneo Occidentale, Libro Guida e Riassunti, Villanovaforru, 19–22 June, p. 13–25.Google Scholar
Assorgia, A., Barca, S., Porcu, A., and Spano, C., 1997b, Il Miocene sedimentario e vulcanico della Sardegna settentrionale. Inquadramento stratigrafico e riconoscimento di unità deposizionali, in Assorgia, A., Barca, S., and Spano, C., eds., Convegno-escursione: La ‘Fossa sarda’ Nell'Ambito Dell'Evoluzione Geodinamica Cenozoica del Mediterraneo Occidentale, Libro Guida e Riassunti, Villanovaforru, 19–22 June, p. 120–122.Google Scholar
Assorgia, A., Barca, S., Mighela, P., Muntoni, A., Murgia, G., Porcu, A., Rizzo, R., Rombi, G., and Spano, C., 1997c, La successione vulcano-sedimenatria Oligo-miocenica del settore compreso tra Bosa e Santa Caterina di Pittinuri (Sardegna centro-occidentale), in Assorgia, A., Barca, S., and Spano, C., eds., Convegno-escursione: La ‘Fossa sarda’ Nell'Ambito Dell'Evoluzione Geodinamica Cenozoica del Mediterraneo Occidentale, Libro Guida e Riassunti, Villanovaforru, 19–22 June, p. 113–114.Google Scholar
Bacolod, P.T., and Dy, D.T., 1986, Growth, recruitment pattern and mortality rate of the sea urchin, Tripneustes gratilla Linnaeus, in a seaweed farm at Danahon Reef, central Philippines: The Philippine Scientist, v. 23, p. 114.Google Scholar
Bak, R.P.M., 1990, Pattern of echinoid bioerosion in two Pacific coral reef lagoons: Marine Ecology Progress Series, v. 66, p. 267272.Google Scholar
Banno, T., 2008, Ecological and taphonomic significance of spatangoid spines: Relationship between mode of occurrence and water temperature: Paleontological Research, v. 12, p. 145157, doi:10.2517/1342-8144(2008)12[145:EATSOS]2.0.CO;2Google Scholar
Bassi, D., Nebelsick, J.H., Checconi, A., Hohenegger, J., and Iryu, Y., 2009, Present-day and fossil rhodolith pavements compared: Their potential for analysing shallow-water carbonate deposits: Sedimentary Geology, v. 214, p. 7484, doi:10.1016/j.sedgeo.2008.03.010.Google Scholar
Basso, D., Babbini, L., Kaleb, S., Bracchi, V.A., and Falace, A., 2016, Monitoring deep Mediterranean rhodolith beds: Aquatic Conservation Marine and Freshwater Ecosystems, v. 26, p. 549561, doi:10.1002/aqc.2586.Google Scholar
Beccaluva, L., Maciotta, G., and Venturelli, G., 1974, Nuovi dati e considerazioni petrogenetiche sulle serie vulcaniche Plio-quaternarie del Montiferro (Sardegna centro-occidentale): Memorie della Società Geologica Italiana, v. 13, p. 539547.Google Scholar
Bentley, S.J. Sr., and Nittrouer, C.A., 2012, Accumulation and intense bioturbation of bioclastic muds along a carbonate-platform margin: Dry Tortugas, Florida: Marine Geology, v. 315–318, p. 4457, doi:10.1016/j.margeo.2012.05.002.Google Scholar
Blom, W.M., and Aslop, D.B., 1988, Carbonate mud sedimentation on a temperate shelf: Bass Basin, southeastern Australia: Sedimentary Geology, v. 60, p. 269280.10.1016/0037-0738(88)90124-8Google Scholar
Bonaviri, C., Fernández, T.V., Fanelli, G., Badalamenti, F., and Gianguzza, P., 2011, Leading role of the sea urchin Arbacia lixula in maintaining the barren state in southwestern Mediterranean: Marine Biology, v. 158, p. 25052513, doi:10.1007/s00227-011-1751-2.Google Scholar
Bottero, S., Carboni, S., and Pala, A., 2002, Studio idrogeologico del bacino del Rio di Santa Caterina di Pittinuri (Cuglieri, Sardegna centro-occidentale): Rendiconti Seminario Facoltà Scienze Università Cagliari, v. 72, p. 135.Google Scholar
Bromley, R.G., Jensen, M., and Asgaard, U., 1995, Spatangoid echinoids: Deep-tier trace fossils and chemosymbiosis: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 195, p. 2535.Google Scholar
Bronstein, O., Georgopoulou, E., and Kroh, A., 2017, On the distribution of the invasive long-spined echinoid Diadema setosum and its expansion in the Mediterranean Sea: Marine Ecology Progress Series, v. 583, p. 163178, doi:10.3354/meps12348.Google Scholar
Buchanan, J.B., 1966, The biology of Echinocardium cordatum (Echinodermata: Spatangoidea) from different habitats: Journal of the Marine Biological Association of the United Kingdom, v. 46, p. 97114.Google Scholar
Cabanillas-Terán, N., Loor-Andrade, P., Rodríguez-Barreras, R., and Cortés, J., 2016, Trophic ecology of sea urchins in coral-rocky reef systems, Ecuador: PeerJ, v. 4, p. e1578, doi:10.7717/peerj.1578.Google Scholar
Carboni, S., Lecca, L., and Tilocca, G., 2010, Analisi stratigrafico-morfologica e censimento dei processi franosi in atto sulle coste alte nel settore costiero compreso tra Capo San Marco e Capo Marrargiu (Sardegna centro-occidentale): Cagliari, Italy, Università di Cagliari, Dipartimento di Scienze della Terra, Provincia di Oristano, Assessorato alla Difesa dell'Ambiente, 625 p.Google Scholar
Carmignani, L., Oggiano, G., Barca, S., Conti, P., Salvadori, I., Eltrudis, A., Funedda, A., and Pasci, S., 2001, Geologia della Sardegna: Note illustrative della carta geologica in scala 1:200.000: Memorie Descrittive della Carta Geologica d'Italia, Istituto Poligrafico Zecca dello Stato, Roma, v. 60, 283 p.Google Scholar
Carmignani, L., Oggiano, G., Funedda, A., Conti, P., and Pasci, S., 2015, The geological maps of Sardinia (Italy) at 1:250,000 scale: Journal of Maps, v. 12, p. 826835, doi:10.1080/17445647.2015.1084544.Google Scholar
Carpenter, R.C., 1985, Sea-urchin mass-mortality: Effects on reef algal abundance, species composition and metabolism and other coral reef herbivores, in Gabrié, C., and Salvat, B., eds., Proceedings of the Fifth International Coral Reef Congress, Tahiti: Moorea, French Polynesia, Antenne Muséum EPHE, v. 4, p. 53–60.Google Scholar
Challis, G.R., 1980, Palaeoecology and taxonomy of mid-Tertiary Maltese echinoids [Ph.D. Thesis]: London, Bedford College, University of London, 401 p.Google Scholar
Chao, S.M., 2000, The irregular sea urchins (Echinodermata: Echinoidea) from Taiwan, with description of six new records: Zoological Studies, v. 39, p. 250265.Google Scholar
Cherchi, A., and Montandert, L., 1982, Il sistema di rifting Oligo-Miocenico del Mediterraneo occidentale e sue conseguenze paleogeografiche sul Terziario sardo: Memorie della Società Geologica Italiana, v. 24, p. 387400.Google Scholar
Chesher, R.H., 1966, Redescription of the echinoid species Paraster floridiensis (Spatangoida: Schizasteridae): Bulletin of Marine Science, v. 16, p. 119.Google Scholar
Chesher, R.H., 1968, The systematics of sympatric species in West Indian spatangoids: A revision of the genera Brissopsis, Plethotaenia, Paleopneustes and Saviniaster: Studies in Tropical Oceanography, v. 7, p. 1168.Google Scholar
Chesher, R.H., 1969, Contributions to the biology of Meoma ventricosa (Echinoidea: Spatangoida): Bulletin of Marine Science, v. 19, p. 72110.Google Scholar
Chesher, R.H., 1972, The status of knowledge of Panamanian echinoids, 1971, with comments on other echinoderms: Bulletin of the Biological Society of Washington, v. 2, 139158.Google Scholar
Clark, H.L., 1917, Hawaiian and other Pacific Echini: Memoirs of the Museum of Comparative Zoology, Harvard College, v. 46, p. 85283.Google Scholar
Comaschi Caria, I., 1951, Osservazioni paleontologico-stratigrafiche sul Miocene e sul Quaternario marino della zona di Pittinuri a nord-ovest del Golfo di Oristano: Rendiconti Seminario Facoltà di Scienze Università di Cagliari, v. 20, p. 116.Google Scholar
Comaschi Caria, I., 1972, Gli echinidi del Miocene della Sardegna: Cagliari, Italy, Stabilimento Tipografico Editoriale Fossataro S.p.A., 96 p.Google Scholar
Como, S., Magni, P., Baroli, M., Casu, D., De Falco, G., and Floris, A., 2008, Comparative analysis of macrofaunal species richness and composition in Posidonia oceanica, Cymodocea nodosa and leaf litter beds: Marine Biology, v. 153, p. 10871101, doi:10.1007/s00227-007-0881-z.Google Scholar
Coppard, S.E., and Campbell, A.C., 2005, Distribution and abundance of regular sea urchins on two coral reefs in Fiji: Micronesica, v. 37, p. 249269.Google Scholar
Coppard, S.E., and Campbell, A.C., 2007, Grazing preferences of diadematid echinoids in Fiji: Aquatic Botany, v. 86, p. 204212, doi:10.1016/j.aquabot.2006.10.005.Google Scholar
Cordeiro, C.A.M.M., Harborne, A.R., and Ferreira, C.E.L., 2014, Patterns of distribution and composition of sea urchin assemblages on Brazilian subtropical rocky reefs: Marine Biology, v. 161, p. 22212232, doi:10.1007/s00227-014-2500-0.Google Scholar
Cotteau, G., 1895, Description des Échinides recueillis par M. Lovisato dans le Miocène de la Sardaigne: Mémoires de la Société Géologique de France, v. 13, p. 556.Google Scholar
De Ridder, C., 1982, Feeding and some aspects of the gut structure in the spatangoid echinoid, Echinocardium cordatum (Pennant), in Lawrence, J.M., ed., Proceedings of the Fourth Intenational Echinoderm Conference, Tampa, 1981: Rotterdam, A.A. Balkema, p. 59.Google Scholar
De Ridder, C., and Lawrence, J.M., 1982, Food and feeding mechanisms: Echinoidea, in Jangoux, M., and Lawrence, J.M., eds., Echinoderm Nutrition: Rotterdam, The Netherlands, A.A. Balkema, p. 499519.Google Scholar
Degraer, S., Wittoeck, J., Appeltans, W., Cooreman, K., Deprez, T., Hillewaert, H., Hostens, K., Mees, J., Vanden Berghe, E., and Vincx, M., 2006, The Macrobenthos Atlas of the Belgian Part of the North Sea: Brussels, Belgian Science Policy, 164 p.Google Scholar
Desor, E., 1855–1858, Synopsis des Échinides Fossiles: Paris, Reinwald, 490 p.Google Scholar
Despalatović, M., Grubelić, I., Piccinetti, C., Cvitović, I., Antolić, B., Žuljević, A., and Nikolić, V., 2009, Distribution of echinoderms on continental shelf in open waters of the northern and middle Adriatic Sea: Journal of the Marine Biological Association of the United Kingdom, v. 89, p. 585591, DOI :10.1017/s002531540900304X.Google Scholar
Donovan, S.K., Renema, W., Pinnington, C.A., and Veltkamp, C.J., 2011, Significance of diadematid echinoid ossicles in micropalaeontological samples, Miocene-Pliocene of Indonesia: Alcheringa, v. 36, p. 99105, doi :10.1080/03115518.2011.584492.Google Scholar
Düben, M.W. von, and Koren, J., 1846, Öfversigt af Skandinaviens Echinodermer: Kungliga Svenska Vetenskapsakademiens Handlingar, 1844, p. 229–328, available online at http://babel.hathitrust.org/cgi/pt?id=mdp.39015039478022;view=1up;seq=235 (accessed February 2019).Google Scholar
Duineveld, C.A., and Jenness, M.I., 1984, Differences in growth rates of the sea urchin Echinocardium cordatum as estimated by the parameter ω of the von Bertalanffy equation applied to skeletal rings: Marine Ecology Progress Series, v. 19, p. 6572.Google Scholar
Durham, J.W., 1966, Clypeasteroids, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part U, Echinodermata 3: Boulder, Colorado, and Lawrence, Kansas, Geological society of America (and University of Kansas Press), p. U450U491.Google Scholar
Dworschak, P.C., 2000, Global diversity in the Thalassinidea (Decapoda): Journal of Crustacean Biology, v. 20, p. 238245, doi:10.1163/1937240X-90000025.Google Scholar
Elmasry, E., Omar, H.A., Abdel Razek, F.A., and El-Magd, M.A., 2013, Preliminary studies on habitat and diversity of some sea urchin species (Echinodermata: Echinoidea) on the southern Levantine basin of Egypt: Egyptian Journal of Aquatic Research, v. 39, p. 303311, doi:10.1016/j.ejar.2013.12.009.Google Scholar
Embry, A.F., and Klovan, J.S., 1971, A Late Devonian reef tract on northeastern Banks Island N.W.T.: Bulletin of Canadian Petroleum Geology, v. 4, p. 730781.Google Scholar
Ernst, G., Hähnel, W., and Seibertz, E., 1973, Aktuopaläontologie und Merkmalsvariabilität bei mediterranen Echiniden und Rückschlüsse auf die Ökologie und Artumgrenzung fossiler Formen: Paläontologische Zeitschrift, v. 47, p. 188216.Google Scholar
Facenna, C., Speranza, F., D'Ajello Caracciolo, F., Mattei, M., and Oggiano, G., 2002, Extensional tectonics on Sardinia (Italy): Insights into the arc-back-arc transitional regime: Tectonophysics, v. 356, p. 213232, doi:10.1016/S0040-1951(02)00287-1.Google Scholar
Ferber, I., and Lawrence, J.M., 1976, Distribution, substratum and burrowing behaviour of Lovenia elongata (Gray) (Echinoidea: Spatangoida) in the Gulf of Elat (‘Aqaba), Red Sea: Journal of Experimental Marine Biology and Ecology, v. 22, p. 207225.Google Scholar
Forbes, E.A., 1841, A history of British starfishes and other animals of the class Echinodermata: London, John van Voorst, 267 p.Google Scholar
Forbes, E.A., 1844, On the Radiata of the eastern Mediterranean: Proceedings of the Linnean Society of London, v. 1, p. 184186.Google Scholar
Foster, M. S., 2001, Rhodoliths: Between rocks and soft places: Journal of Phycology, v. 37, p. 659667, doi:10.1046/j.1529-8817.2001.00195.x.Google Scholar
Foster, M.S., Amado-Filho, G.M., Kamenos, N.A., Riosmena-Rodriguez, R., and Steller, D.L., 2013, Rhodoliths and rhodolith beds, in Lang, M.A., Marinelli, R.L., Roberts, S.J., and Taylor, P.R., eds., Research and Discoveries: The Revolution of Science Through SCUBA: Smithsonian Contributions to the Marine Sciences, v. 39, p. 143–155.Google Scholar
Fourtau, R., 1920, Catalogue des Invertebres Fossiles de l'Egypte, Terrains Tertiaires, 2 Partie, Echinodermes Neogenes: Geological Survey of Egypt, Palaeontology Series 4: Cairo, Egypt, Government Press, 101 p.Google Scholar
Funedda, A., Oggiano, G., and Pasci, S., 2000, The Logudoro Basin: A key area for the Tertiary tectono-sedimentary evolution of North Sardinia: Bollettino della Società Geologica Italiana, v. 119, p. 3138.Google Scholar
Funedda, A., Oggiano, G., and Pascucci, V., 2003, I depositi Miocenici della Sardegna settentrionale: Il bacino del Logudoro, in Pascucci, V., ed., Atti del Convegno GEOSED 2003: Sassari, Italy, Editoria e Stampa, p. 381414.Google Scholar
Gagnon, P., Matheson, K., and Stapleton, M., 2012, Variation in rhodolith morphology and biogenic potential of newly discovered rhodolith beds in Newfoundland and Labrador (Canada): Botanica Marina, v. 55, p. 8599, doi:10.1515/bot-2011-0064.Google Scholar
Gale, A.S., and Smith, A.B., 1982, The palaeobiology of the Cretaceous irregular echinoids Infulaster and Hagenowia: Paleontology, v. 25, p. 1142.Google Scholar
Gibbs, P.E., 1963, The functional morphology and ecology of the spatangoid genus Brisaster Gray [M.S. thesis]: Vancouver, University of British Columbia, 51 p.Google Scholar
Gingras, M.K., Pemberton, S.G., Dashtgard, S.E., and Dafoe, L., 2008, How fast do marine invertebrates burrow?: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 270, p. 280286, doi:10.1016/j.palaeo.2008.07.015.Google Scholar
Gondim, A.I., Dias, T.L.P., and Christoffersen, M.L., 2013, Diadema ascensionis Mortensen, 1909 (Echinodermata: Echinoidea) is not restriceted to oceanic islands: Evidence from morphological data: Brazilian Journal of Biology, v. 73, p. 431435, doi:10.1590/S1519-69842013000200027.Google Scholar
Gondim, A.I., Dias, T.L.P., Duarte, R.C.S., Riul, P., Lacouth, P., and Christoffersen, M.L., 2014, Filling a knowledge gap on the biodiversity of rhodolith-associated Echinodermata from northeastern Brazil: Tropical Conservation Science, v. 7, p. 8799, doi:10.1177/194008291400700112.Google Scholar
Gray, J.E., 1825, An attempt to divide the Echinida, or sea eggs, into natural families: Annals of Philosophy, new ser., v. 10, p. 423431.Google Scholar
Gray, J.E., 1845, Description of two new invertebrated animals from Australia, in Eyre, E. J., ed., Journals of Expeditions of Discovery into Central Australia and Overland from Adelaide to King Georg's Sound in 1840–41: London, T. & W. Boone, v., 1, p. 435–436.Google Scholar
Gray, J.E., 1851, Descriptions of some new genera and species of Spatangidae in the British Museum: The Annals and Magazine of Natural History, v. 7, p. 130134.Google Scholar
Gray, J.E., 1855, Catalogue of the Recent Echinida, or Sea Eggs, in the Collection of the British Museum, Part 1, Echinida irregularia 1: London, Woodfall and Kinder, 69 p.Google Scholar
Greenstein, B.J., 1989, Mass mortality of the West-Indian echinoid Diadema antillarum (Echinodermata: Echinoidea): A natural experiment in taphonomy: Palaios, v. 4, p. 487492.Google Scholar
Greenstein, B.J., 1991, An integrated study of echinoid taphonomy: Predictions for the fossil record of four echinoid Families: Palaios, v. 6, p. 519540.Google Scholar
Greenstein, B.J., 1992, Taphonomic bias and the evolutionary history of the family Cidaridae (Echinodermata: Echinoidea): Paleobiology, v. 18, p. 5079.Google Scholar
Greenstein, B.J., 1993a, The effect of life habit on the preservation potential of echinoids, in White, B.N., ed., Proceedings of the Sixth Symposium on the Geology of the Bahamas: San Salvador, Bahamas, Bahamian Field Station, p. 5574.Google Scholar
Greenstein, B.J., 1993b, Is the fossil record of regular echinoids so poor?: A comparison of living and subfossil assemblages: Palaios, v. 8, p. 587601.Google Scholar
Greenstein, B.J., 1995, The effects of life habit and test microstructure on the preservation potential of echinoids in Graham's Harbour, San Salvador Island, Bahamas: Geological Society of America, Special Paper, v. 300, p. 177188.Google Scholar
Grubelic, I., 1998, Presence of the species Genocidaris maculata Agassiz, 1869, Echinoidea, Echinodermata in the Adriatic Sea: Periodicum Biologorum, v. 100, p. 3942.Google Scholar
Grun, T.B., Sievers, D., and Nebelsick, J.H., 2014, Drilling predation on the clypeasteroid echinoid Echinocyamus pusillus from the Mediterranean Sea (Giglio, Italy): Historical Biology, v. 26, p. 745757, doi:10.1080/08912963.2013.841683.Google Scholar
Guidetti, P., and Mori, M., 2005, Morpho-functional defences of Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula, against fish predators: Marine Biology, v. 147, p. 797802, doi:10.1007/s00227-005-1611-z.Google Scholar
Guillou, M., and Lumingas, L.J.L., 1998, The reproductive cycle of the ‘blunt’ sea urchin: Aquaculture International, v. 6, p. 147160.Google Scholar
Guillou, M., and Michel, C., 1993, Reproduction and growth of Sphaerechinus granularis (Echinodermata: Echinoidea) in southern Brittany: Journal of the Marine Biological Association of the United Kingdom, v. 73, p. 179192.Google Scholar
Harmelin, J.G., and Duval, C., 1983, Localisation et dissémination des jeunes de l'oursin Sphaerechinus granularis (Lamarck) en Méditerranée: Rapports et Procès-Verbaux des Réunions: Commission Internationale pour l'Exploration Scientifique de la Mer Mediterranée, Monaco, v. 28, p. 267269.Google Scholar
Harrold, C., and Pearse, J.S., 1987, The ecological role of echinoderms in kelp forests, in Jangoux, M., and Lawrence, J.M., eds., Echinoderm Studies, Volume 2: Rotterdam, The Netherlands, A.A. Balkema, p. 137233.Google Scholar
Hendler, G., Miller, J.E., Pawson, D.L., and Kier, P.M., 1995, Sea Stars, Sea Urchins, and Allies: Echinoderms of Florida and the Caribbean: Washington DC, Smithsonian Institution Press, 390 p.Google Scholar
Hernández, J.C., Clemente, S., Tuya, F., Pérez-Ruzafa, A., Sangil, C., Moro-Abad, L., and Bacallado-Aránega, J.J., 2013, Echinoderms of the Canary Islands, Spain, in Alvarado, J.J., and Solís-Marín, F.A., eds., Echinoderm Research and Diversity in Latin America: Berlin, Springer, p. 471510.Google Scholar
Hernandez-Kantun, J.J., Hall-Spencer, J.M., Grall, J., Adey, W., Rindi, F., Maggs, C.A., Bárbara, I., and Peña, V., 2017, North Atlantic rhodolith beds, in Riosmena-Rodríguez, R., Aguirre, J., and Nelson, W., eds., Rhodolith/Maërl Beds: A Global Perspective: Coastal Research Library Book 15 : Cham, Springer International Publishing, p. 265279.Google Scholar
Hollertz, K., and Duchêne, J.-C., 2001, Burrowing behaviour and sediment reworking in the heart urchin Brissopsis lyrifera Forbes (Spatangoida): Marine Biology, v. 139, p. 951957, doi :10.1007/s002270100629.Google Scholar
Hollertz, K., Sköld, M., and Rosenberg, R., 1998, Interactions between two deposit feeding echinoderms: The spatangoid Brissopsis lyrifera (Forbes) and the ophiuroid Amphiura chiajei (Forbes): Hydrobiologia, v. 376, p. 287295.Google Scholar
Hopkins, T.S., 1988, A review of the distribution and proposed morphological groupings of extant species of the genus Clypeaster in the Caribbean Sea and Gulf of Mexico, in Burke, R.D., Mladenov, P.V., Lambert, P., and Parseley, R.L., eds., Echinoderm Biology: Proceedings of the Sixth International Echinoderm Conference: Rotterdam, Balkema, p. 337345.Google Scholar
Horta, P.A., Riul, P., Amado Filho, G.M., Gurgel, C.F.D., Berchez, F., Nunes, J.M.C., Scherner, F., Pereira, S., Lotufo, T., Peres, L., Sissini, M., Bastos, E.O., Rosa, J., Munoz, P., Martins, C., Gouvêa, L., Carvalho, V., Bergstrom, E., Schubert, N., Bahia, R.G., Rodrigues, A.C., Rörig, L., Barufi, J.B., and Figueiredo, M., 2016, Rhodoliths in Brazil: Current knowledge and potential impacts of climate change: Brazilian Journal of Oceanography, v. 64, p. 117136.Google Scholar
Jacob, U., Terpstra, S., and Brey, T., 2003, High-Antarctic regular sea urchins—The role of depth and feeding in niche separation: Polar Biology, v. 26, p. 99104, doi:10.1007/s00300-002-0453-0.Google Scholar
James, D.B., and Pearse, J.S., 1969, Echinoderms from the Gulf of Suez and the northern Red Sea: Journal of the Marine Biological Association of India, v. 11, p. 78–12.Google Scholar
James, D.W., 2000, Diet, movement, and covering behavior of the sea urchin Toxopneustes roseus in rhodolith beds in the Gulf of California, México: Marine Biology, v. 137, p. 913923, doi:10.1007/s002270000423.Google Scholar
Kamenos, N.A., Moore, P.G., and Hall-Spencer, J.M., 2004, Nursery-area function of maerl grounds for juvenile queen scallops Aequipecten opercularis and other invertebrates: Marine Ecology Progress Series, v. 274, p. 183189, doi:10.3354/meps274183.Google Scholar
Kanazawa, K., 1992, Adaptation of test shape for burrowing and locomotion in spatangoid echinoids: Palaeontology, v. 35, p. 733750.Google Scholar
Kehas, A.J., Theoharides, K.A., and Gilbert, J.J., 2005, Effect of sunlight intensity and albinism on the covering response of the Caribbean sea urchin Tripneustes ventricosus: Marine Biology, v. 146, p. 11111117, doi:10.1007/s00227-004-1514-4.Google Scholar
Keller, B.D., 1983, Coexistence of sea urchins in seagrass meadows: An experimental analysis of competition and predation: Ecology, v. 64, p. 15811588.Google Scholar
Kidwell, S.M., and Baumiller, T., 1990, Experimental disintegration of regular echinoids: Roles of temperature, oxygen and decay thresholds: Paleobiology, v. 16, p. 247271.Google Scholar
Kidwell, S.M., and Holland, S.M., 1991, Field description of coarse bioclastic fabric: Palaios, v. 6, p. 426434.Google Scholar
Kier, P.M., 1975, The echinoids of Carrie Bow Cay, Belize: Smithsonian Contributions to Zoology, v. 206, p. 145.Google Scholar
Kier, P.M., 1977, The poor fossil record of the regular echinoid: Paleobiology, v. 3, p. 168174.Google Scholar
Kier, P.M., and Grant, R.E., 1965, Echinoid distribution and habits: Key Largo Coral Reef Preserve, Florida: Smithsonian Miscellaneous Collections, v. 149, p. 168.Google Scholar
Koehler, R., 1927, Les Echinodermes des mers d'Europe, Volume 2: Paris, Gaston Doin et Cie, 406 p.Google Scholar
Koike, I., Mukai, H., and Nojima, S., 1987, The role of the sea urchin, Tripneustes gratilla (Linnaeus), in decomposition and nutrient cycling in a tropical seagrass bed: Ecological Research, v. 2, p. 1929.Google Scholar
Koukouras, A., Sinis, A.I., Bobori, D., Savas, K., and Miltiadis-Spyridon, K., 2007, The echinoderm (Deuterostomia) fauna of the Aegean Sea, and comparison with those of the neighbouring seas: Journal of Biological Research, v. 7, p. 6792.Google Scholar
Kroh, A., 2005, Catalogus Fossilium Austriae, Band 2, Echinoidea Neogenica: Vienna, Österreichische Akademie der Wissenschaften, 210 p.Google Scholar
Kroh, A., and Nebelsick, J.H., 2003, Echinoid assemblages as a tool for palaeoenvironmental reconstruction—An example from the early Miocene of Egypt: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 201, p. 157177, doi:10.1016/S0031-0182(03)00610-2.Google Scholar
Kroh, A., and Smith, A.B., 2010, The phylogeny and classification of post-Palaeozoic echinoids: Journal of Systematic Palaeontology, v. 8, p. 147212, doi:10.1080/14772011003603556.Google Scholar
Labbé-Bellas, R., Cordeiro, C.A.M.M., Floeter, S.R., and Segal, B., 2016, Sea urchin abundance and habitat relationships in different Brazilian reef types: Regional Studies in Marine Science, v. 8, p. 3340, doi:10.1016/j.rsma.2016.09.004.Google Scholar
Lamarck, J.B.P.M. de, 1801, Système des Animaux sans Vertèbres, ou Tableau Général des Classes, des Ordres et des Genres des ces Animaux: Paris, Deterville, 432 p.Google Scholar
Lamarck, J.B.P.M. de, 1816, Histoire Naturelle des Animaux sans Vertèbres, Présentant les Caractères Généraux et Particuliers de ces Animaux, leur Distribution, leur Classes, leurs Familles, leurs Generes, et le Citation des Principales Espèces qui s'y Rapportent; Précédée d'une Introduction Offrant la Détermination des Caractères Essentiells de l'Animal, sa Distinction du Végétal et des Autres Corps Naturels, Enfin, l'Exposition des Principes Fondamentaux de la Zoologie, Volume 3: Paris, Verdière, 586 p.Google Scholar
Lambert, J., 1907, Description des échinides fossiles des terrains Miocéniques de la Sardaigne: Mémoires de la Société Paléontologique Suisse, v. 34, p. 172.Google Scholar
Lambert, J., and Thiéry, P., 1909–1925, Essai de Nomenclature Raisonnée des Echinides: Chaumont, France, Libraire Septime Ferriere, 607 pp.Google Scholar
Lawrence, J.M., 1975, On the relationship between marine plants and sea-urchins: Oceanography and Marine Biology, An Annual Review, v. 13, p. 213286.Google Scholar
Lawrence, J.M., and Agatsuma, Y., 2007, The ecology of Tripneustes, in Lawrence, J.M., ed., Edible Sea Urchins: Biology and Ecology: Amsterdam, Elsevier Science, p. 499520.Google Scholar
Lawrence, J.M., and Agatsuma, Y., 2013, Tripneustes, in Lawrence, J.M., ed., Sea Urchins: Biology and Ecology: Croydon, UK, Academic Press, p. 491508.Google Scholar
Lawrence, J.M., and Ferber, I., 1971, Substrate particle size and the occurrence of Lovenia elongata (Echinodermata: Echinoidea) at Taba, Gulf of Elat (Red Sea): Israel Journal of Zoology v. 20, p. 131138.Google Scholar
Leske, N.G., 1778, Jacobi Theodori Klein Naturalis Dispositio Echinodermatum, Edita et Descriptionibus Novisque Inventis et Synonomis Auctorem Aucta, Addimenta ad I.T. Klein Naturalem Dispositionem Echinodermatum: Leipzig, Germany, G.E. Beer, 278 p.Google Scholar
Lessios, H.A., 2005, Echinoids of the Pacific waters of Panama: Status of knowledge and new records: Revista de Biología Tropical, v. 53, p. 147170.Google Scholar
Lessios, H.A., Kane, J., and Robertson, D.R., 2003, Phylogeography of the pantropical sea urchin Tripneustes: Contrasting patterns of population structure between oceans: Evolution, v. 57, p. 20262036, doi:10.1554/02-681.Google Scholar
Lewis, J.B., 1964, Feeding and digestion in the tropical sea urchin Diadema antillarum Philippi: Canadian Journal of Zoology, v. 42, p. 549557.Google Scholar
Leymerie, A., 1842, Suite de mémoire sur le terrain Crétacé du département de l'Aube: Mémoires de la Société Géologique de France, v. 5, p. 134.Google Scholar
Linnaeus, C., 1758, Systema Naturae per Regna Tria Naturae (tenth edition), Volume 1, Regnum Animale: Stockholm, Laurentii Salvii, 824 p.Google Scholar
Littler, M.M., Littler, D.S., and Hanisak, M.D., 1991, Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation: Journal of Experimental Marine Biology and Ecology, v. 150, p. 163182.Google Scholar
Lohrer, A.M., Thrush, S.F., Hunt, L., Hancock, N., and Lundquist, C., 2005, Rapid reworking of subtidal sediments by burrowing spatangoid urchins: Journal of Experimental Marine Biology and Ecology, v. 321, p. 155169, doi:10.1016/j.jembe.2005.02.002.Google Scholar
Lokier, S.W., and Al Junaibi, M., 2016, The petrographic description of carbonate facies: Are we all speaking the same language?: Sedimentology, v. 63, p. 18431885, doi:10.1111/sed.12293.Google Scholar
Lyimo, T.J., Mamboya, F., Hamisi, M., and Lugomela, C., 2011, Food preference of the sea urchin Tripneustes gratilla (Linnaeus, 1758) in tropical seagrass habitats at Dar es Salaam, Tanzania: Journal of Ecology and the Natural Environment, v. 3, p. 415423.Google Scholar
Maciá, S., and Robinson, M.P., 2009, Growth rates of the tropical sea urchins Tripneustes ventricosus and Lytechinus variegatus based on natural recruitment events: Caribbean Journal of Science, v. 45, p. 6468, doi:10.18475/cjos.v45i1.a9.Google Scholar
Mägdefrau, K., 1932, Über einige Bohrgänge aus dem Unteren Muschelkalk von Jena: Paläontologische Zeitschrift, v. 14, p. 150160.Google Scholar
Mancosu, A., and Nebelsick, J.H., 2013, Multiple routes to mass accumulations of clypeasteroid echinoids: A comparative analysis of Miocene echinoid beds of Sardinia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 374, p. 173186, doi:10.1016/j.palaeo.2013.01.015.Google Scholar
Mancosu, A., and Nebelsick, J.H., 2015, The origin and paleoecology of clypeasteroid assemblages from different shelf setting of the Miocene of Sardinia, Italy: Palaios, v. 30, p. 273387, doi:10.2110/palo.2014.087.Google Scholar
Mancosu, A., and Nebelsick, J.H., 2016, Echinoid assemblages from the early Miocene of Funtanazza (Sardinia): A tool for reconstructing depositional environments along a shelf gradient: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 454, p. 139160, doi:10.1016/j.palaeo.2016.03.024.Google Scholar
Mancosu, A., and Nebelsick, J.H., 2017a, Ecomorphological and taphonomic gradient of clypeasteroid-dominated echinoid assemblages along a mixed siliciclastic-carbonate shelf from the early Miocene of northern Sardinia, Italy: Acta Palaeontologica Polonica, v. 62, p. 627646, doi:10.4202/app.00357.2017.Google Scholar
Mancosu, A., and Nebelsick, J.H., 2017b, Palaeoecology and taphonomy of spatangoid-dominated echinoid assemblages: A case study from the early-middle Miocene of Sardinia, Italy: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 466, p. 334352, doi:10.1016/j.palaeo.2016.11.053.Google Scholar
Mancosu, A., Nebelsick, J.H., Kroh, A., and Pillola, G.L., 2015, The origin of echinoid shell beds in siliciclastic shelf environments: Three examples from the Miocene of Sardinia, Italy: Lethaia, v. 48, p. 8399, doi:10.1111/let.12090.Google Scholar
Martínez-Pita, I., Sánchez-España, A.I., and García, F.J., 2008, Gonadal growth and reproduction in the sea urchin Sphaerechinus granularis (Lamarck, 1816) (Echinodermata: Echinoidea) in southern Spain: Scientia Marina, v. 72, p. 603611.Google Scholar
Mazzei, R., and Oggiano, G., 1990, Messa in evidenza di due cicli sedimentari nel Miocene dell'area di Florinas (Sardegna Settentrionale): Atti della Società Toscana di Scienze Naturali, Memorie, ser. A, v. 97, p. 119147.Google Scholar
Mazzetti, G., 1893, Catalogo degli echini del Mar Rosso: Atti della Società dei Naturalisti e Matematici di Modena, v. 12, p. 238243.Google Scholar
McClanahan, T.R., 1988, Coexistence in a sea urchin guild and its implications to coral reef diversity and degradation: Oecologia, v. 77, p. 210218.Google Scholar
McClanahan, T.R., 1995, Fish predators and scavengers of the sea urchin Echinometra mathaei in Kenyan coral-reef marine parks: Environmental Biology of Fishes, v. 43, p. 187193.Google Scholar
McClanahan, T.R., 1998, Predation and the distribution and abundance of tropical sea urchin populations: Journal of Experimental Marine Biology and Ecology, v. 221, p. 231255.Google Scholar
Mighela, P., Muntoni, A., Assorgia, A., Porcu, A., and Spano, C., 1997, Le successioni sedimentarie mioceniche affioranti nel Bosano-Planargia-Montiferru (Sardegna Centro-Occidentale), in Assorgia, A., Barca, S., and Spano, C., eds., Convegno-escursione: La ‘Fossa sarda’ Nell'Ambito Dell'Evoluzione Geodinamica Cenozoica del Mediterraneo Occidentale, Libro Guida e Riassunti, Villanovaforru, Italy, 19–22 June, p. 146.Google Scholar
Miskelly, A., 2002, Sea Urchins of Australia and the Indopacific: Sydney, Australia, Capricornica Publications, 179 p.Google Scholar
Mörch, O.A.L., 1852, Catalogus Conchyliorum quae Reliquit D. Alphonso d'Aguirra & Gadea, Comes de Yoldi 1, Cephalophora: Copenhagen, L. Klein, 170 p.Google Scholar
Mortensen, T., 1907, The Danish Ingolf-Expedition 1895–1896, Volume 4, Number 2, Echinoidea, Part 2: Copenhagen, Bianco Luno, 200 p.Google Scholar
Mortensen, T., 1909, Die Echinoiden der Deutschen Südpolar Expedition 1901–1903, in von Drygalski, E., ed., Deutsche Südpolar-Expedition 1901–1903, v. 11, no. 1, 114 p.Google Scholar
Mortensen, T., 1940, Monograph of the Echinoidea, III, 1, Aulodonta: Copenhagen, C.A. Reitzel, 370 p.Google Scholar
Mortensen, T., 1943, A Monograph of the Echinoidea, III, 2, Camaradonta, I. Orthopsidae, Glyphocyphidae, Temnopleuridae and Toxopneustidae: Copenhagen, C.A. Reitzel, 553 p.Google Scholar
Mortensen, T., 1948, A Monograph of the Echinoidea, IV, 2, Clypeastroida, Clypeastridae, Arachnoididae, Fibulariidae, Langanidae, and Scutellidae: Copenhagen, C.A. Reitzel, 471 p.Google Scholar
Mortensen, T., 1950, New Echinoidea (Spatangoida): Preliminary notice: Videnskabelige Meddelelsar Dansk Naturhistoriske Forening i København, v. 112, p. 157163.Google Scholar
Mortensen, T., 1951, A Monograph of the Echinoidea, V, 2, Spatangoida, II, Amphisternata, II, Spatangidæ, Loveniidæ, Pericosmidæ, Schizasteridæ, Brissidæ: Copenhagen, C.A. Reitzel, 593 p.Google Scholar
Müller, O.F., 1776, Zoologiae Danicae Prodromus: Seu Animalium Daniae et Norvegiae Indigenarum Characteres, Nomina, et Synonyma Imprimis Popularium: Copenhagen, Typiis Hallageriis, 274 p.Google Scholar
Muthiga, N.A., and McClanahan, T.R., 2007, Ecology of Diadema, in Lawrence, J.M., ed., Edible Sea Urchins: Biology and Ecology: Amsterdam, Elsevier Science, p. 205225.Google Scholar
Nader, M.R., and El Indary, S., 2011, First record of Diadema setosum (Leske, 1778) (Echinodermata, Echinoidea, Diadematidae) from Lebanon, eastern Mediterranean: Aquatic Invasion, v. 6, supplement no. 1, p. 2325, doi:10.3391/ai.2011.6.S1.005.Google Scholar
Nakamura, Y., 2001, Autoecology of the heart urchin, Echinocardium cordatum, in the muddy sediment of the Seto Island Sea, Japan: Journal of the Marine Biological Association of the United Kingdom, v. 81, p. 289297.Google Scholar
Nateghi Shahrokni, S.A., Fatemi, S.M.R., Nabavi, S.M.B., and Vosoughi, G.H., 2016, Contribution to the knowledge of echinoid fauna from Persian Gulf (Echinodermata: Echinoidea): Iranian Journal of Animal Biosystematics, v. 12, p. 3750, doi:10.22067/ijab.v12i1.47391.Google Scholar
Nebelsick, J.H., 1992a, Echinoid distribution by fragment identification in the Northern Bay of Safaga, Red Sea, Egypt: Palaios, v. 7, p. 316328.Google Scholar
Nebelsick, J.H., 1992b, The Northern Bay of Safaga (Red Sea, Egypt): An actuopalaeontological approach, III, Distribution of echinoids: Beiträge zur Paläontologie von Österreich, v. 17, p. 579.Google Scholar
Nebelsick, J.H., 1996, Biodiversity of shallow-water Red Sea echinoids: Implications for the fossil record: Journal of the Marine Biological Association of the United Kingdom, v. 76, p. 185194.Google Scholar
Nebelsick, J.H., and Kowalewski, M., 1999, Drilling predation on Recent clypeasteroid echinoids from the Red Sea: Palaios, v. 14, p. 127144.Google Scholar
Néraudeau, D., Goubert, E., Lacour, J.M., and Rouchy, J.M., 2001, Changing biodiversity of Mediterranean irregular echinoids from the Messinian to present-day: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 175, p. 4360, doi:10.1016/S0031-0182(01)00385-6.Google Scholar
Nichols, D., 1959, Changes in the chalk heart-urchin Micraster interpreted in relation to living forms: Philosophical Transactions of the Royal Society of London, ser. B, v. 242, p. 347437.Google Scholar
Norman, A.M., 1869, Last report on dredging among the Shetland Isles, Part 2: On the Crustacea, Tunicata, Polyzoa, Echinodermata, Actinozoa, Hydrozoa, and Porifera: Report of the Thirty-Eighth Meeting of the British Association for the Advancement of Science, Norwich, August 1868: London, v. 38, p. 247–336.Google Scholar
Palacín, C., Turon, X., Ballesteros, M., Giribert, G., and López, S., 1998, Stock evaluation of three littoral echinoid species on the Catalan coast (north-western Mediterranean): Marine Ecology, v. 19, p. 163177.Google Scholar
Pascelli, C., Riul, P., Riosmena-Rodrìguez, R., Scherner, F., Nunes, M., Hall-Spencer, J.M., Oliveira, E.C., and Horta, P., 2013, Seasonal and depth-driven changes in rhodolith bed structure and associated macroalgae off Arvoredo Island (southeastern Brazil): Aquatic Botany, v. 111, p. 6265, doi:10.1016/j.aquabot.2013.05.009.Google Scholar
Pearse, J.S., 1970, Reproductive periodicities of Indo-Pacific invertebrates in the Gulf of Suez, III, The echinoid Diadema Setosum (Leske): Bulletin of Marine Science, v. 20, p. 697720.Google Scholar
Pennant, T., 1777, British Zoology, Volume 4, Crustacea, Mollusca, Testacea: London, Benjamin White, 154 p.Google Scholar
Pérès, J.M., and Picard, J., 1964, Nouveau manuel de bionomie bentique de la Mer Méditerranèe: Recueil des Travaux de la Station Marine d'Endoume, v. 31, p. 5137.Google Scholar
Peters, W.K.H., 1855, Über die an der Küste von Mossambique beobachteten Seeigel und insbesondere über die Gruppe von Diademen: Abhandlungen der Koeniglichen Akademie der Wissenschaften zu Berlin, v. 1854, p. 101119.Google Scholar
Petović, S., and Krpo-Ćetković, J., 2016, How depth and substratum type affect diversity and distribution patterns of echinoderms on the continental shelf in the south-eastern Adriatic Sea?: Acta Zoologica Bulgarica, v. 68, p. 8996.Google Scholar
Philippi, R.A., 1845, Beschreibung einiger neuer Echinodermen nebst kritischen Bemerckungen über einige weniger bekannte Arten: Archiv für Naturgeschichte, v. 11, p. 344359.Google Scholar
Pisera, A., 1994, Echinoderms of the Mójcza Limestone, in Dzik, J., Olempska, E., and Pisera, A, Ordovician Carbonate Platform Ecosystem of the Holy Cross Mountains, Poland: Palaeontologia Polonica, v. 53, p. 283307.Google Scholar
Pomel, A., 1869, Revue des Échinodermes et leur Classification pour Servir d'Introduction à l’Étude des Fossiles: Paris, C. Deyrolle, 67 p.Google Scholar
Pomel, A., 1883, Classification méthodique et genera des échinides vivante et fossiles [Ph.D. Thèsis]: Paris, Académie de Paris, 131 p.Google Scholar
Privitera, D., Noli, M., Falugi, C., and Chiantore, M., 2008, Inter- and intraspecific competition between Paracentrotus lividus and Arbacia lixula in resource-limited barren areas: Journal of Sea Research, v. 60, p. 184192, doi:10.1016/j.seares.2008.07.001.Google Scholar
Pusch, G.G., 1837, Polens Paläontologie oder Abbildung und Beschreibung der vorzüglichsten und den noch unbeschriebenen Petrefakten aus den Gebirgsformationen in Polen, Vollhynienund den Karpaten: Stuttgart, Germany, E. Schweizerbart, 218 p.Google Scholar
Randall, J.E., Schroeder, R.E., and Starck, W.A., 1964, Notes on the biology of the echinoid Diadema antillarum: Caribbean Journal of Science, v. 4, p. 421433.Google Scholar
Regalado, J.M., Campos, W.L., and Santillan, A.S., 2010, Population biology of Tripneustes gratilla (Linnaeus) (Echinodermata) in seagrass beds of southern Guimaras, Philippines: Science Diliman, v. 22, p. 4149.Google Scholar
Régis, M.B., 1979, Particularités microstructurales du squelette de Paracentrotus lividus et Arbacia lixula: Rapports avec l’écologie et l’éthologie de ces échinoïdes: Marine Biology, v. 54, p. 373382.Google Scholar
Riedl, R., 1983, Fauna und Flora des Mittelmeeres: Berlin, Paul Parey, 836 p.Google Scholar
Rodríguez-Barreras, R., 2014, The shallow-water echinoids (Echinodermata: Echinoidea) of Cuba: Marine Biodiversity Records, v. 7, p. 18, doi:10.1017/S175526721400092X.Google Scholar
Röding, P.F., 1798, Museum Boltenianum, Sive Catalogus Cimeliorum e Tribus Regnis Naturae, Quae Olim Collegerat Joa. Fried. Bolten, M.D.p.d. per XL: Annos Proto Physicus Hamburgensis, Pars Secunda, Continens Conchylia Sive Testacea Univalvia, Bivalvia et Multivalvia: Hamburg, J.C. Trappius, 199 p.Google Scholar
Rowe, F.W.E., and Gates, J., 1995, Echinodermata, in Wells, A., ed., Zoological Catalogue of Australia, Volume 33: Melbourne, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO), p. 294295.Google Scholar
Saitoh, M., and Kanazawa, K., 2012, Adaptive morphology for living in shallow water environments in spatangoid echinoids: Zoosymposia, v. 7, p. 255265, doi:10.11646/zoosymposia.7.1.24.Google Scholar
Sala, E., and Zabala, M., 1996, Fish predation and the structure of the sea urchin Paracentrotus lividus populations in the NW Mediterranean: Marine Ecology Progress Series, v. 140, p. 7181.Google Scholar
Sartoretto, S., and Francour, P., 1997, Quantification of bioerosion of Sphaerechinus granularis on coralligene concretions of the western Mediterranean: Journal of the Marine Biological Association of the United Kingdom, v. 77, p. 565568.Google Scholar
Schin, P.K.S., and Thompson, G.B., 1982, Spatial distribution of the infaunal benthos of Hong Kong: Marine Ecology Progress Series, v. 10, p. 3747.Google Scholar
Schinner, G.O., 1993, Burrowing behavior, substrate preference, and distribution of Schizaster canaliferus (Echinoidea: Spatangoida) in the northern Adriatic Sea: Marine Ecology, v. 14, p. 129145.Google Scholar
Schmid, H.P., Harzhauser, M., and Kroh, A., 2001, Hypoxic events on a middle Miocene carbonate platform of the Central Paratethys (Austria, Badenian, 14 Ma): Annales Naturhistorischen Museum Wien, v. 102A, p. 150.Google Scholar
Schultz, H., 2005, Sea Urchins: Hemdingen, Germany, Heinke and Peter Schultz Partner, 484 p.Google Scholar
Sciberras, M., Rizzo, M., Mifsud, J.R., Camilleri, K., Borg, J.A., Lanfranco, E., and Schembri, P.J., 2009, Habitat structure and biological characteristic of a maerl bed off the northeastern coast of the Maltese Island (central Mediterranean): Marine Biodiversity, v. 39, p. 251264, doi:10.1007/s12526-009-0017-4.Google Scholar
Scoffin, T.P., 1988, The environments of production and deposition of calcareous sediments on the shelf west of Scotland: Sedimentary Geology, v. 60, p. 107124.Google Scholar
Seilacher, A., 1979, Constructional morphology of sand dollars: Palaeobiology, v. 5, p. 191221.Google Scholar
Serafy, D.K., 1979, Echinoids (Echinodermata: Echinoidea): Memoirs of the Hourglass Cruises, v. 5, p. 1120.Google Scholar
Seymour, S., Paul, N.A., Dworjanyn, S.A., and de Nys, R., 2013, Feeding preference and performance in the tropical sea urchin Tripneustes gratilla: Aquaculture, v. 400–401, p. 613, doi:10.1016/j.aquaculture.2013.02.030.Google Scholar
Sievers, D., and Nebelsick, J.H., 2018, Fish predation on a Mediterranean echinoid: Identification and preservation potential: Palaios, v. 33, p. 4754, doi:10.2110/palo.2017.041.Google Scholar
Smith, A.B., 1978, A functional classification of the coronal pores of regular echinoids: Palaeontology, v. 21, p. 8184.Google Scholar
Smith, A.B., 1980a, The structure and arrangement of echinoid tubercles: Philosophical Transaction of the Royal Society of London B, v. 289, p. 154.Google Scholar
Smith, A.B., 1980b, The structure, function, and evolution of tube feet and ambulacral pores in irregular echinoids: Palaeontology, v. 23, p. 3983.Google Scholar
Smith, A.B., 1984, Echinoid Palaeobiology: London, George Allen and Unwin Limited, 199 p.Google Scholar
Smith, A.B., and Gale, A.S., 2009, The pre-Messinian deep-sea Neogene echinoid fauna of the Mediterranean: Surface productivity controls and biogeographical relationships: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 281, p. 115125, doi:10.1016/j.palaeo.2009.07.016.Google Scholar
Smith, A.B., and Kroh, A., eds., 2011, The Echinoid Directory: http://www.nhm.ac.uk/research-curation/projects/echinoid-directory (accessed 8 January 2018).Google Scholar
Smith, A.B., and Savill, J.J., 2001, Bromidechinus, a new Ordovician echinozoan (Echinodermata), and its bearing on the early history of echinoids: Transactions of the Royal Society of Edinburgh, Earth Sciences, v. 92, p. 137147, doi:10.1017/S0263593300000109.Google Scholar
Speranza, F., Villa, I.M., Sagnotti, L., Florindo, F., Cosentino, D., Cipollari, P., and Mattei, M., 2002, Age of the Corsica and Sardinia rotation and Liguro-Provençal Basin spreading: New paleomagnetic and Ar/Ar evidences: Tectonophysics, v. 347, p. 231251, doi:10.1016/S0040-1951(02)00031-8.Google Scholar
Steller, D.L., Riosmena-Rodrìguez, R., Foster, M.S., and Roberts, C.A., 2003, Rhodolith bed diversity in the Gulf of California: The importance of rhodolith structure and consequences of disturbance: Aquatic Conservation: Marine and Freshwater Ecosystems, v. 13, supplement no. S1, p. 520, doi:10.1002/aqc.564.Google Scholar
Stimson, J., Cunha, T., and Philippoff, J., 2007, Food preferences and related behavior of the browsing sea urchin Tripneustes gratilla (Linnaeus) and its potential for use as a biological control agent: Marine Biology, v. 151, p. 17611772, doi:10.1007/s00227-007-0628-x.Google Scholar
Tedesco, L.P., and Wanless, H.R., 1991, Generation of sedimentary fabrics and facies by repetitive excavation and storm infilling of burrow networks, Holocene of South Florida and Caicos Platform, B.W.I.: Palaios, v. 6, p. 326343.Google Scholar
Teichert, S., 2014, Hollow rhodoliths increase Svalbard's shelf biodiversity: Scientific Reports, v. 4, p. 6972, doi: 10.1038/srep06972.Google Scholar
Telford, M., 1985, Structural analysis of the test of Echinocyamus pusillus (O.F. Müller), in Keegan, B.F., and O'Conner, B.D.S., eds., Proceedings of the Fifth International Echinoderm Conference, Galway, 24-29 September 1984: Rotterdam, The Netherlands, A.A. Balkema, p. 353360.Google Scholar
Telford, M., Harold, A., and Mooi, R., 1983, Feeding structures, behavior, and microhabitat of Echinocyamus pusillus (Echinoidea: Clypeasteroida): Biological Bulletin, v. 165, p. 745757.Google Scholar
Telford, M., Mooi, R., and Harold, A., 1987, Feeding activities of two species of Clypeaster (Echinoides, Clypeasteroida): Further evidence of clypeasteroid resource partitioning: Biological Bulletin, v. 172, p. 324336.Google Scholar
Tertschnig, W.P., 1989, Diel activity patterns and foraging dynamics of the sea urchin Tripneustes ventricosus in a tropical seagrass community and a reef environment (Virgin Islands): Marine Ecology, v. 10, p. 321.Google Scholar
Thiéry, P., 1909, Rectifications de nomenclature: Revue Critique de Paléozoologie, v. 13, p. 136137.Google Scholar
Thomas, B., and Gennesseaux, M., 1986, A two-stage rifting in the basins of the Corsica-Sardinian straits: Marine Geology, v. 72, p. 225239.Google Scholar
Thompson, B., and Riddle, M.J., 2005, Bioturbation behaviour of the spatangoid urchin Abatus ingens in Antarctic marine sediments: Marine Ecology Progress Series, v. 290, p. 135143, doi:10.3354/meps290135.Google Scholar
Tortonese, E., 1965, Fauna d'Italia, Volume 6, Echinodermata: Bologne, Italy, Calderini, 424 p.Google Scholar
Tortonese, E., 1977, Recenti acquisizioni e rettifiche intorno ai crinoidi, oloturoidi, ofiuroidi ed echinoidi del Mediterraneo, con particolare riguardo alla fauna Italiana: Atti della Società Italiana di Scienze Naturali, Milano, v. 118, p. 333352.Google Scholar
Tuya, F., Martin, J.A., and Luque, A., 2004, Patterns of nocturnal movement of the long-spined sea urchin Diadema antillarum (Philippi) in Gran Canaria (the Canary Islands, central East Atlantic Ocean): Helgoland Marine Research, v. 58, p. 2631, doi:10.1007/s10152-003-0164-0.Google Scholar
Unger, B., and Lott, C., 1994, In-situ studies aggregation behavior of the sea urchin Spaherechinus granularis Lam. (Echinodermata: Echinoidea), in David, B., Guille, A., Feral, J-P., and Roux, M., eds., Echinoderms Through Time: Rotterdam, The Netherlands, Balkema, p. 913919.Google Scholar
Ursin, E., 1960, A quantitative investigation of the echinoderm fauna of the central North Sea: Meddelelser fra Danmark Fiskeri-og-Havundersogelser, new ser., v. 2, p. 5-204.Google Scholar
Vaïtilingon, D., Rasolofonirina, R., and Jangoux, M., 2003, Feeding preferences, seasonal gut repletion indices, and diel feeding patterns on the sea urchin Tripneustes gratilla (Echinodermata, Echinoidea) on a costal habitat off Toliara (Madagascar): Marine Biology, v. 143, p. 451458, doi:10.1007/s00227-003-1111-y.Google Scholar
van Phelsum, M., 1774, Brief aan den Wel-Eerwaardigen en Zeer Geleerden Heere Cornelius Nozeman, Dienaar des Goddelyken Woords in de Gemeente der Remonstranten, Lid van de Hollandsche Maatschappye der Letterkunde te Leiden, en Mede-Direteur van het Bataafsch Genootschap der Proef-Ondervindelyke, Wysbegeerte te Rotterdam, Over de Gewelv-Slekken of Zee-Egelen: Waar Achter Gevoegd zyn Twee Beschryvingen, de Eene van Zekere Soort van Zee-Wier: De Andere van Maaden, in Eene Vuile Verzweeringe Gevonden: Rotterdam, The Netherlands, R. Arrenberg, 145 p.Google Scholar
Velluttini, B.C., and Bigotto, A.E., 2010, Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida): PloS ONE, v. 5, p. e9654, doi:10.1371/journal.pone.0009654.Google Scholar
Vonk, J.A., Pijnappels, M.H.J., and Stapel, J., 2008, In situ quantification of Tripneustes gratilla grazing and its effects on three co-occurring tropical seagrass species: Marine Ecology Progress Series, v. 360, p. 107114, doi:10.3354/meps07362.Google Scholar
Walker, D.E., and Gagnon, J.M., 2014, Locomotion and functional spine morphology of the hearth urchin Brisaster fragilis, with comparison to B. latifrons: Journal of Marine Biology, v. 2014, art. 297631, 9 p., doi:10.1155/2014/297631.Google Scholar
Wanless, H.R., Tedesco, L.P., and Tyrrell, K.M., 1988, Production of subtidal tubular and surficial tempestites by Hurricane Kate, Caicos Platform, British West Indies: Journal of Sedimentary Petrology, v. 58, p. 739750.Google Scholar
Weber, F., 1795, Nomenclator Entomologicus Secundum Entomologiam Systematicum ill. Fabricii: Adjectis Speciebus Recens Detectis et Varietatibus: Kiel, Carolum Ernestum Bohn, 171 p.Google Scholar
Widdicombe, S., and Austen, M.C., 1998, Experimental evidence for the role of Brissopsis lyrifera (Forbes, 1841) as a critical species in the maintenance of benthic diversity and the modification of sediment chemistry: Journal of Experimental Marine Biology and Ecology, v. 228, p. 241255.Google Scholar
Yokes, B., and Galil, B.S., 2006, The first record of the needle-spined urchin Diadema setosum (Leske, 1778) (Echinodermata: Echinoidea: Diadematidae) from the Mediterranean Sea: Aquatic Invasion, v. 1, p. 188190, doi:10.3391/ai.2006.1.3.15.Google Scholar
Zavodnik, D., 2003, Marine fauna of Mljet National Park (Adriatic Sea, Croatia) 2: Echinodermata: Acta Adriatica, v. 44, p. 101157.Google Scholar